Search results

1 – 6 of 6
Article
Publication date: 30 April 2024

Baoxu Tu, Yuanfei Zhang, Kang Min, Fenglei Ni and Minghe Jin

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction…

Abstract

Purpose

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction methods: handcrafted features, convolutional features and autoencoder features. Subsequently, these features were mapped to contact locations through a contact location regression network. Finally, the network performance was evaluated using spherical fittings of three different radii to further determine the optimal feature extraction method.

Design/methodology/approach

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image.

Findings

This research indicates that data collected by probes can be used for contact localization. Introducing a batch normalization layer after the feature extraction stage significantly enhances the model’s generalization performance. Through qualitative and quantitative analyses, the authors conclude that convolutional methods can more accurately estimate contact locations.

Originality/value

The paper provides both qualitative and quantitative analyses of the performance of three contact localization methods across different datasets. To address the challenge of obtaining accurate contact locations in quantitative analysis, an indirect measurement metric is proposed.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2024

Nalinda Dissanayaka, Hamish Alexander, Danilo Carluccio, Michael Redmond, Luigi-Jules Vandi and James I. Novak

Three-dimensional (3D)printed skulls for neurosurgical training are increasingly being used due to the widespread access to 3D printing technology, their low cost and accuracy, as…

Abstract

Purpose

Three-dimensional (3D)printed skulls for neurosurgical training are increasingly being used due to the widespread access to 3D printing technology, their low cost and accuracy, as well as limitations and ethical concerns associated with using human cadavers. However, little is known about the risks of airborne particles or volatile organic compounds (VOCs) released while drilling into 3D-printed plastic models. The aim of this study is to assess the level of exposure to airborne contaminants while burr hole drilling.

Design/methodology/approach

3D-printed skull samples were produced using three different materials (polyethylene terephthalate glycol [PETG], white resin and BoneSTN) across three different 3D print processes (fused filament fabrication, stereolithography [SLA] and material jetting). A neurosurgeon performed extended burr hole drilling for 10 min on each sample. Spot measurements of particulate matter (PM2.5 and PM10) were recorded, and air samples were analysed for approximately 90 VOCs.

Findings

The particulate matter for PETG was found to be below the threshold value for respirable particles. However, the particulate matter for white resin and BoneSTN was found to be above the threshold value at PM10, which could be harmful for long periods of exposure without personal protective equipment (PPE). The VOC measurements for all materials were found to be below safety thresholds, and therefore not harmful.

Originality/value

To the best of the authors’ knowledge, this is the first study to evaluate the safety of 3D-printed materials for burr hole surgical drilling. It recommends PETG as a safe material requiring minimal respiratory control measures, whereas resin-based materials will require safety controls to deal with airborne particles.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2024

Jacqueline Humphries, Pepijn Van de Ven, Nehal Amer, Nitin Nandeshwar and Alan Ryan

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored…

Abstract

Purpose

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored using lasers. However, lasers cannot distinguish between human and non-human objects in the robot’s path. Stopping or slowing down the robot when non-human objects approach is unproductive. This research contribution addresses that inefficiency by showing how computer-vision techniques can be used instead of lasers which improve up-time of the robot.

Design/methodology/approach

A computer-vision safety system is presented. Image segmentation, 3D point clouds, face recognition, hand gesture recognition, speed and trajectory tracking and a digital twin are used. Using speed and separation, the robot’s speed is controlled based on the nearest location of humans accurate to their body shape. The computer-vision safety system is compared to a traditional laser measure. The system is evaluated in a controlled test, and in the field.

Findings

Computer-vision and lasers are shown to be equivalent by a measure of relationship and measure of agreement. R2 is given as 0.999983. The two methods are systematically producing similar results, as the bias is close to zero, at 0.060 mm. Using Bland–Altman analysis, 95% of the differences lie within the limits of maximum acceptable differences.

Originality/value

In this paper an original model for future computer-vision safety systems is described which is equivalent to existing laser systems, identifies and adapts to particular humans and reduces the need to slow and stop systems thereby improving efficiency. The implication is that computer-vision can be used to substitute lasers and permit adaptive robotic control in human–robot collaboration systems.

Details

Technological Sustainability, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-1312

Keywords

Article
Publication date: 8 May 2024

Minghao Wang, Ming Cong, Yu Du, Huageng Zhong and Dong Liu

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no…

Abstract

Purpose

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no longer satisfied with enabling robots to build maps by remote control, more needs will focus on the autonomous exploration of unknown areas, which refer to the low light, complex spatial features and a series of unstructured environment, lick underground special space (dark and multiintersection). This study aims to propose a novel robot structure with mapping and autonomous exploration algorithms. The experiment proves the detection ability of the robot.

Design/methodology/approach

A small bio-inspired mobile robot suitable for underground special space (dark and multiintersection) is designed, and the control system is set up based on STM32 and Jetson Nano. The robot is equipped with double laser sensor and Ackerman chassis structure, which can adapt to the practical requirements of exploration in underground special space. Based on the graph optimization SLAM method, an optimization method for map construction is proposed. The Iterative Closest Point (ICP) algorithm is used to match two frames of laser to recalculate the relative pose of the robot, which improves the sensor utilization rate of the robot in underground space and also increase the synchronous positioning accuracy. Moreover, based on boundary cells and rapidly-exploring random tree (RRT) algorithm, a new Bio-RRT method for robot autonomous exploration is proposed in addition.

Findings

According to the experimental results, it can be seen that the upgraded SLAM method proposed in this paper achieves better results in map construction. At the same time, the algorithm presents good real-time performance as well as high accuracy and strong maintainability, particularly it can update the map continuously with the passing of time and ensure the positioning accuracy in the process of map updating. The Bio-RRT method fused with the firing excitation mechanism of boundary cells has a more purposeful random tree growth. The number of random tree expansion nodes is less, and the amount of information to be processed is reduced, which leads to the path planning time shorter and the efficiency higher. In addition, the target bias makes the random tree grow directly toward the target point with a certain probability, and the obtained path nodes are basically distributed on or on both sides of the line between the initial point and the target point, which makes the path length shorter and reduces the moving cost of the mobile robot. The final experimental results demonstrate that the proposed upgraded SLAM and Bio-RRT methods can better complete the underground special space exploration task.

Originality/value

Based on the background of robot autonomous exploration in underground special space, a new bio-inspired mobile robot structure with mapping and autonomous exploration algorithm is proposed in this paper. The robot structure is constructed, and the perceptual unit, control unit, driving unit and communication unit are described in detail. The robot can satisfy the practical requirements of exploring the underground dark and multiintersection space. Then, the upgraded graph optimization laser SLAM algorithm and interframe matching optimization method are proposed in this paper. The Bio-RRT independent exploration method is finally proposed, which takes shorter time in equally open space and the search strategy for multiintersection space is more efficient. The experimental results demonstrate that the proposed upgrade SLAM and Bio-RRT methods can better complete the underground space exploration task.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 May 2024

Alex Yao, Naythan Chan and Nansheng Yao

Due to rapid digitalization, the emergence of the “phygital” environment, which blends physical and digital experiences, creates unique challenges for researchers. This paper aims…

Abstract

Purpose

Due to rapid digitalization, the emergence of the “phygital” environment, which blends physical and digital experiences, creates unique challenges for researchers. This paper aims to introduce an interpretivist methodological framework designed to understand consumer behavior in phygital environments. The framework enables an in-depth exploration of the contextual factors, subjective experiences, personal emotions and social networks that influence consumer behavior in this space.

Design/methodology/approach

The framework was developed after a thorough literature review of the phygital environment and interpretivist research landscape. Consistent with the phygital transformation theory, this approach allows researchers to go beyond the limitations of purely quantitative methods, gaining a deeper understanding of consumer behavior in phygital environments. The framework is organized into four meticulously designed pillars, each focusing on specific aspects of research and using distinct data collection and analysis approaches.

Findings

The systematic framework facilitates exploration of various dimensions of consumer experiences in phygital settings through qualitative research techniques. Uncovering the richness of contextual factors, subjective meanings, consumer experiences and social interactions within the phygital environment yields meaningful insights into consumer decision-making and preferences. These insights help marketers craft better phygital marketing strategies.

Originality/value

This interpretivist framework presents a unique approach for researchers hoping to investigate consumer behavior in phygital environments. It offers deep insights and understanding of this largely unexplored space, contributing to the evolving body of knowledge in phygital studies.

Details

Qualitative Market Research: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1352-2752

Keywords

Article
Publication date: 30 April 2024

Debajani Sahoo, Aditya Shankar Mishra and Hima Bindhu Vannem Reddy

This study aims to explore the motivators of mothers’ experience on their engagement behavior in the case of baby care toiletries. Additionally, the role of Brand trust and…

Abstract

Purpose

This study aims to explore the motivators of mothers’ experience on their engagement behavior in the case of baby care toiletries. Additionally, the role of Brand trust and commitment have also been evaluated.

Design/methodology/approach

The conceptual model was empirically tested based on the data collected through a survey using 320 samples from India and 431 samples from Sri Lanka. Data were analyzed using structural equation modeling.

Findings

Sensory and behavioral dimensions of brand experience can be considered as key drivers of brand trust and brand commitment among millennial mothers in the context of baby care toiletries. It was observed that brand trust had a significant positive impact on brand commitment. There was a significant relationship between brand trust, brand commitment and customer engagement. It was also inferred that brand loyalty is the consequence of customer engagement.

Practical implications

Marketers should gear up initiatives targeting new mothers through healthy aspects and genuine packaging to strengthen the mother’s trust through periodic uses of the product.

Originality/value

The present study is one of the unique empirical investigations that examine the antecedents of consumer engagement in the less researched context of high inherent risk products like baby toiletries.

Details

Journal of Indian Business Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-4195

Keywords

Access

Year

Last week (6)

Content type

Earlycite article (6)
1 – 6 of 6