Search results

1 – 2 of 2
Article
Publication date: 24 April 2024

Shahriar Abubakri, Pritpal S. Mangat, Konstantinos Grigoriadis and Vincenzo Starinieri

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable…

Abstract

Purpose

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable. Accelerated curing of concrete under MC can contribute to the decarbonisation of the environment and provide economies in construction in several ways such as reducing construction time, energy efficiency, lower cement content, lower carbonation risk and reducing emissions from equipment.

Design/methodology/approach

The paper investigates moisture loss and pore properties of six cement-based proprietary concrete repair materials subjected to MC. The impact of MC on these properties is critically important for its successful implementation in practice and current literature lacks this information. Specimens were microwave cured for 40–45 min to surface temperatures between 39.9 and 44.1 °C. The fast-setting repair material was microwave cured for 15 min to 40.7 °C. MC causes a higher water loss which shows the importance of preventing drying during MC and the following 24 h.

Findings

Portland cement-based normal density repair mortars, including materials incorporating pfa and polymer latex, benefit from the thermal effect of MC on hydration, resulting in up to 24% reduction in porosity relative to normal curing. Low density and flowing repair materials suffer an increase in porosity up to 16% due to MC. The moisture loss at the end of MC and after 24h is related to the mix water content and porosity, respectively.

Originality/value

The research on the application of MC for rapid repair of concrete is original. The research was funded by the European commission following a very rigorous and competitive review process which ensured its originality. Original data on the parameters of porosity and moisture loss under MC are provided for different generic cementitious repair materials which have not been studied before. Application of MC to concrete construction especially in cold climates will provide environmental, economic and energy benefits.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Access

Year

Last month (2)

Content type

Earlycite article (2)
1 – 2 of 2