Search results

1 – 1 of 1
Article
Publication date: 27 August 2024

Xiaobao Chai, Jinglin Liu, RuiZhi Guan and Minglang Xiao

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid…

Abstract

Purpose

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid stepping machine (DPMEHSM) with tangential and radial magnetization.

Design/methodology/approach

First, the structure of DPMEHSM is introduced and its operation principle is analyzed by describing the variation in stator poles versus time. Second, based on the similar electrical load and amount of PM, the size equations of the DPMEHSM are designed and the main parameters are presented. Third, the electromagnetic performances including the PM flux linkage distribution, magnetic density distribution, air-gap field, back electromotive force (back-EMF), detent torque, holding torque and output torque of DPMEHSM and stator-PM hybrid stepping machine (SPMHSM) are analyzed based on the finite element method.

Findings

The results show that the DPMEHSM has superiority in back-EMF, holding torque and output torque.

Originality/value

This paper proposes a DPMEHSM with tangential and radial magnetization to improve the output torque density.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Access

Year

Last week (1)

Content type

1 – 1 of 1