Search results

1 – 9 of 9
Article
Publication date: 28 June 2024

Mohamed Hamed Zakaria and Ali Basha

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions…

Abstract

Purpose

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions, construction considerations, structural integrity, uncertainties in design parameters and construction and monitoring costs. Accordingly, this paper is to provide a detailed literature review on the design criteria of CPWs, specifically in cohesionless soil. This study aims to present a comprehensive overview of the current state of knowledge in this area.

Design/methodology/approach

The paper uses a literature review approach to gather information on the design criteria of CPWs in cohesionless soil. It covers various aspects such as excavation support systems (ESSs), deformation behavior, design criteria, lateral earth pressure calculation theories, load distribution methods and conventional design approaches.

Findings

The review identifies and discusses common challenges associated with the design of CPWs in cohesionless soil. It highlights the uncertainties in determining load distribution and the potential for excessive wall deformations. The paper presents various approaches and methodologies proposed by researchers to address these challenges.

Originality/value

The paper contributes to the field of geotechnical engineering by providing a valuable resource for geotechnical engineers and researchers involved in the design and analysis of CPWs in cohesionless soil. It offers insights into the design criteria, challenges and potential solutions specific to CPWs in cohesionless soil, filling a gap in the existing knowledge base. The paper draws attention to the limitations of existing analytical methods that neglect the serviceability limit state and assume rigid plastic soil behavior, highlighting the need for improved design approaches in this context.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 July 2024

Jinfu Shi and Qi Gao

This study aims to reveal the influence of milling process parameters on the surface roughness and morphology of superalloy GH4145.The groove milling mechanism and surface quality…

Abstract

Purpose

This study aims to reveal the influence of milling process parameters on the surface roughness and morphology of superalloy GH4145.The groove milling mechanism and surface quality influence factors of superalloy GH4145 were studied experimentally.

Design/methodology/approach

This paper provides investigations on three-dimensional finite element model (FEM) and simulation of milling process for GH4145.The milling experiment uses Taguchi L16 experimental design and single factor experimental design. The surface morphology of the workpiece was observed by scanning electron microscopy, and the influence mechanism of milling parameters on surface quality is expounded.

Findings

The results show that the cutting force increases by 133% with the increase in milling depth. The measured minimum surface roughness is 0.035 µm. With the change in milling depth, the surface roughness increases by 249%. With the change in cutting speed, the surface roughness increased by 54.8%. As the feed rate increases, the surface roughness increases by a maximum of 91.1%. The milling experiment verifies that the error between the predicted surface roughness and the actual value is less than 8%.

Originality/value

The milling experiment uses a Taguchi L16 experimental design and a single-factor experimental design. Mathematical models can be used in research as a contribution to current research. In addition, the milling cutter can be changed to further test this experiment. Reveal the influence of milling process parameters on the surface roughness and morphology of superalloy GH4145.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0080/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 September 2024

GuoLong Zhang

This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of…

Abstract

Purpose

This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of inter-well pressure differentials, reservoir temperature and heat extraction fluid on geothermal extraction.

Design/methodology/approach

This study employs theoretical analysis and numerical simulation to explore the coupling mechanisms of temperature, permeability and stress fields in a geothermal reservoir using a thermal-hydrological-mechanical (THM) three-field coupling model.

Findings

The results reveal that the pressure differential between wells significantly impacts geothermal extraction capacity, with SC-CO2 achieving 1.83 times the capacity of water. Increasing the aperture of hydraulic and natural fractures effectively enhances geothermal production, with a notable enhancement for natural fractures.

Originality/value

The research provides a critical theoretical foundation for understanding THM coupling mechanisms in geothermal extraction, supporting the optimization of geothermal resource development and utilization.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 May 2024

Baharak Hooshyarfarzin, Mostafa Abbaszadeh and Mehdi Dehghan

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Abstract

Purpose

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Design/methodology/approach

First, time discretization is accomplished via Crank-Nicolson and semi-implicit techniques. At the second step, a high-order finite element method using quadratic triangular elements is proposed to derive the spatial discretization. The efficiency and time consuming of both obtained schemes will be investigated. In addition to the popular uniform mesh refinement strategy, an adaptive mesh refinement strategy will be employed to reduce computational costs.

Findings

Numerical results show a good agreement between the two schemes as well as the efficiency of the employed techniques to capture acceptable patterns of the model. In central single-crack mode, the experimental results demonstrate that maximal values of displacements in x- and y- directions are 0.1 and 0.08, respectively. They occur around both ends of the line and sides directly next to the line where pressure takes impact. Moreover, the pressure of injected fluid almost gained its initial value, i.e. 3,000 inside and close to the notch. Further, the results for non-central single-crack mode and bifurcated crack mode are depicted. In central single-crack mode and square computational area with a uniform mesh, computational times corresponding to the numerical schemes based on the high order finite element method for spatial discretization and Crank-Nicolson as well as semi-implicit techniques for temporal discretizations are 207.19s and 97.47s, respectively, with 2,048 elements, final time T = 0.2 and time step size τ = 0.01. Also, the simulations effectively illustrate a further decrease in computational time when the method is equipped with an adaptive mesh refinement strategy. The computational cost is reduced to 4.23s when the governed model is solved with the numerical scheme based on the adaptive high order finite element method and semi-implicit technique for spatial and temporal discretizations, respectively. Similarly, in other samples, the reduction of computational cost has been shown.

Originality/value

This is the first time that the high-order finite element method is employed to solve the model investigated in the current paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 16 July 2024

Mohammed Y. Fattah, Qutaiba G. Majeed and Hassan H. Joni

The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle (vertical and…

Abstract

Purpose

The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle (vertical and lateral stresses). The objectives of this study can be identified by studying the effect of subgrade layer degree of saturation variation, load amplitude and load frequency on the transmitted stresses through the ballast layer to the subgrade layer and the stress distribution inside it and investigating the excess pore water pressure development in the clay layer in the case of a fully saturated subgrade layer and the change in matric suction in the case of an unsaturated subgrade layer.

Design/methodology/approach

Thirty-six laboratory experiments were conducted using approximately half-scale replicas of real railways, with an iron box measuring 1.5 x 1.0 × 1.0 m. Inside the box, a 0.5 m thick layer of clay soil representing the base layer was built. Above it is a 0.2 m thick ballast layer made of crushed stone, and on top of that is a 0.8 m long rail line supported by three 0.9 m (0.1 × 0.1 m) slipper beams. The subgrade layer has been built at the following various saturation levels: 100, 80, 70 and 60%. Experiments were conducted with various frequencies of 1, 2 and 4 Hz with load amplitudes of 15, 25 and 35 kN.

Findings

The results of the study demonstrated that as the subgrade degree of saturation decreased from 100 to 60%, the ratio of stress in the lateral direction to stress in the vertical direction generated in the middle of the subgrade layer decreased as well. On average, this ratio changed from approximately 0.75 to approximately 0.65.

Originality/value

The study discovered that as the test proceeded and the number of cycles increased, the value of negative water pressure (matric suction) in the case of unsaturated subgrade soils declined. The frequency of loads had no bearing on the ratio of decline in matric suction values, which was greater under a larger load amplitude than a lower one. As the test progressed (as the number of cycles increased), the matric suction dropped. For larger load amplitudes, there is a greater shift in matric suction. The change in matric suction is greater at higher saturation levels than it is at lower saturation levels. Furthermore, it is seen that the load frequency value has no bearing on how the matric suction changes. For all load frequencies and subgrade layer saturation levels, the track panel settlement rises with the load amplitude. Higher load frequency and saturation levels have a greater impact.

Details

Railway Sciences, vol. 3 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 8 July 2024

Marcella Dsouza, Anuradha Phadtare, Swapnil S. Vyas, Yogesh Shinde and Ajit Jadhav

This study aims to understand how climatic drivers of change will affect rural communities living in the hot semiarid region of Bhokardan Taluka of Jalna district in the Indian…

Abstract

Purpose

This study aims to understand how climatic drivers of change will affect rural communities living in the hot semiarid region of Bhokardan Taluka of Jalna district in the Indian state of Maharashtra. In the context of the economic and social change they are experiencing, the concern is to evolve ways that enable them to cope with, adapt to and benefit from these challenges.

Design/methodology/approach

The focus of most of the climate change studies is on the short- to long-term trends of weather parameters such as rainfall, temperature and extreme weather events. The impact of climate variability and changing patterns on the local communities, the local economy, livelihoods and social life in specific geographies is less explored.

Findings

As the impacts of climatic and nonclimatic drivers of change are cross-sectoral, diverse, multidimensional, interlinked and dynamic, this study has adopted a transdisciplinary “research-in-use” approach involving multidisciplinary teams covering the aspects such as changes in land use and land cover, surface and groundwater status, edaphic conditions, crops and livestock, climate analysis including projected changes, socioeconomic analysis, people’s experience of climate variability and their current coping strategies and resilience (vulnerability) analysis of communities and various livelihood groups.

Research limitations/implications

The study was based on the peoples’ perspective and recommendation based on the local communities ability to cope up with climate change. However, a statistical analysis perspective is missing in the present study.

Originality/value

Based on these findings, a set of implementation-focused recommendations are made that are aimed at conserving and enhancing the resilience of the foundations that uphold and sustain the social and economic well-being of the rural communities in Bhokardan taluka, namely, land, water, agriculture, livestock, food and nutrition security, livelihoods, market access and social capital.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 4
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 16 April 2024

Kunpeng Shi, Guodong Jin, Weichao Yan and Huilin Xing

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel…

Abstract

Purpose

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel machine-learning method for the rapid estimation of permeability of porous media at different deformation stages constrained by hydro-mechanical coupling analysis.

Design/methodology/approach

A convolutional neural network (CNN) is proposed in this paper, which is guided by the results of finite element coupling analysis of equilibrium equation for mechanical deformation and Boltzmann equation for fluid dynamics during the hydro-mechanical coupling process [denoted as Finite element lattice Boltzmann model (FELBM) in this paper]. The FELBM ensures the Lattice Boltzmann analysis of coupled fluid flow with an unstructured mesh, which varies with the corresponding nodal displacement resulting from mechanical deformation. It provides reliable label data for permeability estimation at different stages using CNN.

Findings

The proposed CNN can rapidly and accurately estimate the permeability of deformable porous media, significantly reducing processing time. The application studies demonstrate high accuracy in predicting the permeability of deformable porous media for both the test and validation sets. The corresponding correlation coefficients (R2) is 0.93 for the validation set, and the R2 for the test set A and test set B are 0.93 and 0.94, respectively.

Originality/value

This study proposes an innovative approach with the CNN to rapidly estimate permeability in porous media under dynamic deformations, guided by FELBM coupling analysis. The fast and accurate performance of CNN underscores its promising potential for future applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 July 2024

Fatemeh Tahmoures and Ali Ghanbari

Urban excavations are a cause for concern in terms of the probability of damage to nearby structures. In this study, various structural and excavation parameters were investigated…

54

Abstract

Purpose

Urban excavations are a cause for concern in terms of the probability of damage to nearby structures. In this study, various structural and excavation parameters were investigated to determine the probability of building damage during excavations.

Design/methodology/approach

Finite-element analysis software was used to develop a set of valid three-dimensional models. Models were developed to assess the effects of structural parameters (building height and position relative to the excavation site) and excavation parameters (depth and support system type) on the responses of the adjacent buildings.

Findings

The new design charts estimated the damage to reinforced concrete frame buildings during excavation by focusing on the angular distortion of the building, additional shear strain on the masonry walls and additional strain and stress on columns. This study showed that the probability of damage decreased as the distance between the building and the excavation increased. By contrast, it increased when the building was located at a distance equal to the excavation depth at its edge. According to this study, the axial stress caused by the excavation of building columns does not exceed 10.9% of the compressive strength of the concrete.

Originality/value

The proposed design charts can replace comparable charts and provide a deeper understanding of damage potential based on key parameters. These charts are more practical than previous charts with limited parameters.

Details

Engineering Computations, vol. 41 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 July 2024

Reza Masoumzadeh, Mostafa Abbaszadeh and Mehdi Dehghan

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Abstract

Purpose

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Design/methodology/approach

First, the derivative of the temporal direction is discretized by a second-order linearized finite difference scheme where it conserves the energy stability of the mathematical model. Then, the isogeometric collocation (IGC) method is used to approximate the derivative of spacial direction. The IGC procedure can be applied on irregular physical domains. The IGC method is constructed based upon the nonuniform rational B-splines (NURBS). Each curve and surface can be approximated by the NURBS. Also, a map will be defined to project the physical domain to a simple computational domain. In this procedure, the partial derivatives will be transformed to the new domain by the Jacobian and Hessian matrices. According to the mentioned procedure, the first- and second-order differential matrices are built. Furthermore, the pseudo-spectral algorithm is used to derive the first- and second-order nodal differential matrices. In the end, the Greville Abscissae points are used to the collocation method.

Findings

In the numerical experiments, the efficiency and accuracy of the proposed method are assessed through two examples, demonstrating its performance on both rectangular and nonrectangular domains.

Originality/value

This research work introduces the IGC method as a simulation technique for the phase-field crystal model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 9 of 9