Search results

1 – 10 of over 15000
Article
Publication date: 7 April 2023

Chiara Bedon and Christian Louter

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in…

Abstract

Purpose

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in common loading and boundary conditions. Differing from earlier literature efforts, the present study elaborates on the load-bearing capacity, failure time and fire endurance of ordinary glass elements under fire exposure and sustained mechanical loads, with evidence of major trends in terms of loading condition and cross-sectional layout. Traditional verification approaches for glass in cold conditions (i.e. stress peak check) and fire endurance of load-bearing members (i.e. deflection and deflection rate limits) are assessed based on parametric numerical simulations.

Design/methodology/approach

The mechanical performance of structural glass elements in fire still represents an open challenge for design and vulnerability assessment. Often, special fire-resisting glass solutions are used for limited practical applications only, and ordinary soda-lime silica glass prevails in design applications for load-bearing members. Moreover, conventional recommendations and testing protocols in use for load-bearing members composed of traditional constructional materials are not already addressed for glass members. This paper elaborates on the fire endurance and failure detection methods for structural glass beams that are subjected to standard ISO time–temperature for fire exposure and in-plane bending mechanical loads. Fire endurance assessment methods are discussed with the support of Finite Element (FE) numerical analyses.

Findings

Based on extended parametric FE analyses, multiple loading, geometrical and thermo-mechanical configurations are taken into account for the analysis of simple glass elements under in-plane bending setup and fire exposure. The comparative results show that – in most of cases – thermal effects due to fire exposure have major effects on the actual load-bearing capacity of these members. Moreover, the conventional stress peak verification approach needs specific elaborations, compared to traditional calculations carried out in cold conditions.

Originality/value

The presented numerical results confirm that the fire endurance analysis of ordinary structural glass elements is a rather complex issue, due to combination of multiple aspects and influencing parameters. Besides, FE simulations can provide useful support for a local and global analysis of major degradation and damage phenomena, and thus support the definition of simple and realistic verification procedures for fire exposed glass members.

Article
Publication date: 10 August 2023

Md Azlin Md Said, Fatimah De’nan, Nor Salwani Hashim, Bong Wely and Chuah Hoi Ching

The purpose of this study is to further investigate the potential benefits brought about by the development of modern technology in the steel construction industry. Specifically…

Abstract

Purpose

The purpose of this study is to further investigate the potential benefits brought about by the development of modern technology in the steel construction industry. Specifically, the study focuses on the optimization of tapered members for pre-engineered steel structures, aligning with Eurocode 3 standards. By emphasizing the effectiveness of material utilization in construction, this research aims to enhance the structural performance and safety of buildings. Moreover, it recognizes the pivotal role played by such advancements in promoting economic growth through the reduction of material waste, optimization of cost-efficiency and support for sustainable construction practices.

Design/methodology/approach

Structural performance at initial analysis and final analysis of the selected critical frame were carried out using Dlubal RSTAB 8.18. The structural frame stability and sway imperfections were checked based on MS EN1993-1-1:2005 (EC3). To assess the structural stability of the portal frame using MS EN 1993-1-1:2005 (EC3), cross-sectional resistance and member buckling resistance were verified based on Clause 6.2.4 – Compression, Clause 6.2.5 – Bending Moment, Clause 6.2.6 – Shear, Clause 6.2.8 – Bending and Shear, Clause 6.2.9 – Bending and Axial Force and Clause 6.3.4 – General Method for Lateral and Lateral Torsional Buckling of Structural Components.

Findings

In this study, the cross sections of the web-tapered rafter and column were classified under Class 4. These involved the consideration of elastic shear resistance and effective area on the critical steel sections. The application of the General Method on the verification of the resistance to lateral and lateral torsional buckling for structural components required the extraction of some parameters using structural analysis software. From the results, there was only 5.90% of mass difference compared with the previous case study.

Originality/value

By classifying the web-tapered cross sections of the rafter and column under Class 4, the study accounts for important factors such as elastic shear resistance and effective area on critical steel sections.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 July 2023

Jianhang Xu, Peng Li and Yiren Yang

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the…

Abstract

Purpose

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the structural displacement-dependent unsteady fluid force, the steady one related to structural initial configuration and the variable structural parameters (i.e. the variable support stiffness) are considered in the modeling.

Design/methodology/approach

The steady fluid force is treated as a pipe preload, and the elastically supported pipe-fluid model is dealt with as a prestressed hydroelastic system with variable parameters. To avoid repeated numerical simulations caused by parameter variation, structural and hydrodynamic reduced-order models (ROMs) instead of conventional computational structural dynamics (CSD) and computational fluid dynamics (CFD) solvers are utilized to produce data for the update of the structural, hydrodynamic and hydroelastic state-space equations. Radial basis function neural network (RBFNN), autoregressive with exogenous input (ARX) model as well as proper orthogonal decomposition (POD) algorithm are applied to modeling these two ROMs, and a hybrid framework is proposed to incorporate them.

Findings

The proposed approach is validated by comparing its predictions with theoretical solutions. When the steady fluid force is absent, the predictions agree well with the “inextensible theory”. The pipe always loses its stability via out-of-plane divergence first, regardless of the support stiffness. However, when steady fluid force is considered, the pipe remains stable throughout as flow speed increases, consistent with the “extensible theory”. These results not only verify the accuracy of the present modeling method but also indicate that the steady fluid force, rather than the extensibility of the pipe, is the leading factor for the differences between the in- and extensible theories.

Originality/value

The steady fluid force and the variable structural parameters are considered in the data-driven modeling of a hydroelastic system. Since there are no special restrictions on structural configuration, steady flow pattern and variable structural parameters, the proposed approach has strong portability and great potential application for other hydroelastic problems.

Article
Publication date: 31 March 2023

Huseyin Saglik, Airong Chen and Rujin Ma

Beginners and even experienced ones have difficulties in completing the structural fire analysis due to numerical difficulties such as convergence errors and singularity and have…

Abstract

Purpose

Beginners and even experienced ones have difficulties in completing the structural fire analysis due to numerical difficulties such as convergence errors and singularity and have to spend a lot of time making many repetitive changes on the model. The aim of this article is to highlight the advantages of explicit solver which can eliminate the mentioned difficulties in finite element analysis containing highly nonlinear contacts, clearance between modeled parts at the beginning and large deflections because of high temperature. This article provides important information, especially for researchers and engineers who are new to structural fire analysis.

Design/methodology/approach

The finite element method is utilized to achieve mentioned purposes. First, a comparative study is conducted between implicit and explicit solvers by using Abaqus. Then, a validation process is carried out to illustrate the explicit process by using sequentially coupled heat transfer and structural analysis.

Findings

Explicit analysis offers an easier solution than implicit analysis for modeling multi-bolted connections under high temperatures. An optimum mesh density for bolted connections is presented to reflect the realistic structural behavior. Presented explicit process with the offered mesh density is used in the validation of an experimental study on multi-bolted splice connection under ISO 834 standard fire curve. A good agreement is achieved.

Originality/value

What makes the study valuable is that the points to be considered in the structural fire analysis are examined and it is a guide that future researchers can benefit from. This is especially true for modeling and analysis of multi-bolted connections in finite element software under high temperatures. The article can help to shorten and even eliminate the iterative debugging phases, which is a problematic and very time-consuming process for many researchers.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 30 August 2022

Ilias Thanasoulas, Dan Lauridsen, Bjarne Paulsen Husted and Luisa Giuliani

The purpose of this study is to contribute toward providing the main aspects of numerical modeling the fire behavior of steel structures with finite elements (FEs). The…

Abstract

Purpose

The purpose of this study is to contribute toward providing the main aspects of numerical modeling the fire behavior of steel structures with finite elements (FEs). The application of the method is presented for a characteristic case study comprising the series of large-scale fire door tests performed at the Danish Institute of Fire and Security Technology.

Design/methodology/approach

Following a general overview of current practices in structural fire engineering, the FE method is used to simulate the large-scale furnace tests on steel doors with thermal insulation exposed to standard fire.

Findings

The FE model is compared with the fire test results, achieving good agreement in terms of developed temperatures and deformations.

Originality/value

The numerical methodology and recommended practices for modeling the fire behavior of steel structures are presented, which can be used in support of performance-based fire design standards.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 30 April 2024

Fatimah De’nan, Chong Shek Wai, Tong Teong Yen, Zafira Nur Ezzati Mustafa and Nor Salwani Hashim

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was…

Abstract

Purpose

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was considered to be the more advanced method of analysis because of its ability to represent the true behaviour of the steel structures. Then in the following section, a literature analysis has been carried out on the previous investigations done on steel plates, steel beams and steel frames by other authors. The behaviour of them under different types of loading were presented and are under the investigation of innovative new analysis methods.

Design/methodology/approach

Structure member connections also have the potential for plastic failure. In this study, the authors have highlighted a few topics to be discussed. The three topics in this study are T-end plate connections to a square hollow section, semi-rigid connections and cold-formed steel storage racks with spine bracings using speed-lock connections. Connection is one of the important parts of a structure that ensures the integrity of the structure. Finally, in this technical paper, the authors introduce some topics related to seismic action. Application of the Theory of Plastic Mechanism Control in seismic design is studied in the beginning. At the end, its in-depth application for moment resisting frames-eccentrically braced frames dual systems is investigated.

Findings

When this study involves the design of a plastic structure, the design criteria must involve the ultimate load rather than the yield stress. As the steel behaves in the plastic range, it means the capacity of the steel has reached the ultimate load. Ultimate load design and load factor design are the methods in the range of plastic analysis. After the steel capacity has reached beyond the yield stress, it fulfills the requirement in this method. The plastic analysis method offers a consistent and logical approach to structural analysis. It provides an economical solution in terms of steel weight, as the sections designed using this method are smaller compared with elastic design methods.

Originality/value

The plastic method is the primary approach used in the analysis and design of statically indeterminate frame structures.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 February 2023

M. Vishal and K.S. Satyanarayanan

This study delineates the effect of cover thickness on reinforced concrete (RC) columns and beams under an elevated fire scenario. Columns and beams are important load-carrying…

Abstract

Purpose

This study delineates the effect of cover thickness on reinforced concrete (RC) columns and beams under an elevated fire scenario. Columns and beams are important load-carrying structural members of buildings. Under all circumstances, the columns and beams were set to be free from damage to avoid structural failure. Under the high-temperature scenario, the RC element may fail because of the material deterioration that occurs owing to the thermal effect. This study attempts to determine the optimum cover thickness for beams and columns under extreme loads and fire conditions.

Design/methodology/approach

Cover thicknesses of 30, 40, 45, 50, 60 and 70 mm for the columns and 10, 20, 25, 30, 35, 40, 50, 60 and 70 mm for the beams were adopted in this study. Both steady-state and transient-state conditions under thermomechanical analysis were performed using the finite element method to determine the heat transfer through the RC section and to determine the effect of thermal stresses.

Findings

The results show that the RC elements have a greater influence on the additional cover thickness at extreme temperatures and higher load ratios than at the service stages. The safe limits of the structural members were obtained under the combined effects of elevated temperatures and structural loads. The results also indicate that the compression members have a better thermal performance than the flexural members.

Research limitations/implications

Numerical investigations concerning the high-temperature behavior of structural elements are useful. The lack of an experimental setup encourages researchers to perform numerical investigations. In this study, the finite element models were validated with existing finite element models and experimental results.

Practical implications

The obtained safe limit for the structural members could help to understand their resistance to fire in a real-time scenario. From the safe limit, a suitable design can be preferred while designing the structural members. This could probably save the structure from collapse.

Originality/value

There is a lack of both numerical and experimental research works. In numerical modeling, the research works found in the literature had difficulties in developing a numerical model that satisfactorily represents the structural members under fire, not being able to adequately understand their behavior at high temperatures. None of them considered the influence of the cover thickness under extreme fire and loading conditions. In this paper, this influence was evaluated and discussed.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 31 July 2023

Hongyue Zhao, Chuang Shi, Hongwei Guo and Rongqiang Liu

In order to make the aperture of spatial deployable antenna larger, this paper proposed the study on a spatial annular tensegrity structure with 100 m large scale, which could be…

Abstract

Purpose

In order to make the aperture of spatial deployable antenna larger, this paper proposed the study on a spatial annular tensegrity structure with 100 m large scale, which could be one of the ideal solutions to improve the dimension of the antenna. This study is aiming to figure out the dynamic characteristic of ultra-large annular tensegrity and address the problem of insufficient rigidity with local modes that many ring truss-type deployable antenna structures have faced.

Design/methodology/approach

This work is carried out based on the nonlinear dynamic modelling when fully considering the effect of bending and torsion deformation of beams, as well as the pretension of cables. Additionally, the structural stability analysis based on the proposed stability criterion is also presented to evaluate the tensegrity configuration with different distribution of cable groups.

Findings

This research results verify that the modified structure with radial ribs could eliminate the effect of the local vibration mode on stiffness and is suitable to meet the requirements of the annular tensegrity structure. Additionally, the calculation results demonstrate that the structural configuration of annular tensegrity with 36 groups of cables which share the nodes with radial ribs is more appropriate to enhance the stiffness and structural stability.

Originality/value

A new large annular tensegrity structure with radial ribs and tensioned cables is proposed. Based on the proposed structural configuration, the positive definiteness of the tangent stiffness matrix is carried out as the criterion of stability and the composition of the analytical expression of the tangent stiffness matrix is analyzed. Four levels of tensegrity structure stability have been carried out and the influence of the structural parameters on the stability and the rigidity has been analyzed. A scaled-down prototype is developed to verify the feasibility of the design of the hoop-column-rib configuration by the deployment and dynamic experiment.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2023

Benjamin Asare, Dorcas Nuertey and Emmanuel Poku

Innovation has become extremely important, especially concerning manufacturing firms, as it is known to foster robust and healthy competition. The study aims to examine the effect…

1223

Abstract

Purpose

Innovation has become extremely important, especially concerning manufacturing firms, as it is known to foster robust and healthy competition. The study aims to examine the effect of innovation orientation and supply chain integration on structural flexibility and strategic business performance.

Design/methodology/approach

Using the quantitative approach, 315 questionnaires were distributed to manufacturing firms in three cities (Accra, Kumasi and Takoradi) in Ghana out of which 305 usable responses were retrieved. The partial least square structural equation modeling technique and the statistical package for social sciences software version 27 were used for the data analysis.

Findings

The findings showed that supply chain integration and innovation orientation have a strong beneficial association. A substantial favorable association between structural flexibility and supply chain integration was found in the study once more. What is more, the research revealed a strong positive relationship between supply chain integration and strategic business performance. Furthermore, the study found a strong relation between innovation orientation and strategic business performance.

Originality/value

The research paper adds to the body of knowledge by examining how supply chain integration affects the relationship between innovation orientation, structural flexibility and strategic business performance.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 16 March 2023

Heungsun Hwang, Marko Sarstedt, Gyeongcheol Cho, Hosung Choo and Christian M. Ringle

The purpose of this paper is to present integrated generalized structured component analysis (IGSCA) as a versatile approach for estimating models that contain both components and…

655

Abstract

Purpose

The purpose of this paper is to present integrated generalized structured component analysis (IGSCA) as a versatile approach for estimating models that contain both components and factors as statistical proxies for the constructs. The paper sets out to discuss the how-tos of using IGSCA by explaining how to specify, estimate, and evaluate different types of models. The paper’s overarching aim is to make business researchers aware of this promising structural equation modeling (SEM) method.

Design/methodology/approach

By merging works of literature from various fields of science, the paper provides an overview of the steps that are required to run IGSCA. Findings from conceptual, analytical and empirical articles are combined to derive concrete guidelines for IGSCA use. Finally, an empirical case study is used to illustrate the analysis steps with the GSCA Pro software.

Findings

Many of the principles and metrics known from partial least squares path modeling – the most prominent component-based SEM method – are also relevant in the context of IGSCA. However, there are differences in model specification, estimation and evaluation (e.g. assessment of overall model fit).

Research limitations/implications

Methodological developments associated with IGSCA are rapidly emerging. The metrics reported in this paper are useful for current applications, but researchers should follow the latest developments in the field.

Originality/value

To the best of the authors’ knowledge, this is the first paper to offer guidelines for IGSCA use and to illustrate the method's application by means of the GSCA Pro software. The recommendations and illustrations guide researchers who are seeking to conduct IGSCA studies in business research and practice.

Details

European Business Review, vol. 35 no. 3
Type: Research Article
ISSN: 0955-534X

Keywords

1 – 10 of over 15000