Search results

1 – 10 of over 5000
Article
Publication date: 29 September 2023

Yue Qiao, Wang Wei, Yunxiang Li, Shengzui Xu, Lang Wei, Xu Hao and Re Xia

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the…

152

Abstract

Purpose

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the transition zone between land and water.

Design/methodology/approach

Based on the dynamics model, the authors selected the appropriate state variables to construct the state space model of the robot and estimated the feedback state of the robot through the maximum a posteriori probability estimation. The nonlinear predictive model controller of the robot is constructed by local linearization of the model to perform closed-loop control on the overall motion of the robot. For the control problem of the terminal trajectory, using the neural rhythmic movement theory in bionics to construct a robot central pattern generator (CPG) for real-time generation of terminal trajectory.

Findings

In this paper, the motion state of WFF-AmphiRobot is estimated, and a model-based overall motion controller for the robot and an end-effector controller based on neural rhythm control are constructed. The effectiveness of the controller and motion control algorithm is verified by simulation and physical prototype motion experiments on land and underwater, and the robot can ideally complete the desired behavior.

Originality/value

The paper designed a controller for WFF-AmphiRobot. First, when constructing the robot state estimator in this paper, the robot dynamics model is introduced as the a priori estimation model, and the error compensation of the a priori model is performed by the method of maximum a posteriori probability estimation, which improves the accuracy of the state estimator. Second, for the underwater oscillation motion characteristics of the flipper, the Hopf oscillator is used as the basis, and the flipper fluctuation equation is modified and improved by the CPG signal is adapted to the flipper oscillation demand. The controller effectively controls the position error and heading angle error within the desired range during the movement of the WFF-AmphiRobot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 September 2023

Minghao Wang, Ming Cong, Dong Liu, Yu Du, Xiaojing Tian and Bing Li

The purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic…

Abstract

Purpose

The purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic (RTK) data in underground spatial features and gravity fluctuations environment. This method improves the mapping accuracy in two types of underground space: multi-layer space and large-scale scenarios.

Design/methodology/approach

An IMU–Laser–RTK fusion mapping algorithm based on Iterative Kalman Filter was proposed, and the observation equation and Jacobian matrix were derived. Aiming at the problem of inaccurate gravity estimation, the optimization of gravity is transformed into the optimization of SO(3), which avoids the problem of gravity over-parameterization.

Findings

Compared with the optimization method, the computational cost is reduced. Without relying on the wheel speed odometer, the robot synchronization localization and 3D environment modeling for multi-layer space are realized. The performance of the proposed algorithm is tested and compared in two types of underground space, and the robustness and accuracy in multi-layer space and large-scale scenarios are verified. The results show that the root mean square error of the proposed algorithm is 0.061 m, which achieves higher accuracy than other algorithms.

Originality/value

Based on the problem of large loop and low feature scale, this algorithm can better complete the map loop and self-positioning, and its root mean square error is more than double compared with other methods. The method proposed in this paper can better complete the autonomous positioning of the robot in the underground space with hierarchical feature degradation, and at the same time, an accurate 3D map can be constructed for subsequent research.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 April 2023

Sixing Liu, Yan Chai, Rui Yuan and Hong Miao

Simultaneous localization and map building (SLAM), as a state estimation problem, is a prerequisite for solving the problem of autonomous vehicle motion in unknown environments…

Abstract

Purpose

Simultaneous localization and map building (SLAM), as a state estimation problem, is a prerequisite for solving the problem of autonomous vehicle motion in unknown environments. Existing algorithms are based on laser or visual odometry; however, the lidar sensing range is small, the amount of data features is small, the camera is vulnerable to external conditions and the localization and map building cannot be performed stably and accurately using a single sensor. This paper aims to propose a laser three dimensions tightly coupled map building method that incorporates visual information, and uses laser point cloud information and image information to complement each other to improve the overall performance of the algorithm.

Design/methodology/approach

The visual feature points are first matched at the front end of the method, and the mismatched point pairs are removed using the bidirectional random sample consensus (RANSAC) algorithm. The laser point cloud is then used to obtain its depth information, while the two types of feature points are fed into the pose estimation module for a tightly coupled local bundle adjustment solution using a heuristic simulated annealing algorithm. Finally, the visual bag-of-words model is fused in the laser point cloud information to establish a threshold to construct a loopback framework to further reduce the cumulative drift error of the system over time.

Findings

Experiments on publicly available data sets show that the proposed method in this paper can match its real trajectory well. For various scenes, the map can be constructed by using the complementary laser and vision sensors, with high accuracy and robustness. At the same time, the method is verified in a real environment using an autonomous walking acquisition platform, and the system loaded with the method can run well for a long time and take into account the environmental adaptability of multiple scenes.

Originality/value

A multi-sensor data tight coupling method is proposed to fuse laser and vision information for optimal solution of the positional attitude. A bidirectional RANSAC algorithm is used for the removal of visual mismatched point pairs. Further, oriented fast and rotated brief feature points are used to build a bag-of-words model and construct a real-time loopback framework to reduce error accumulation. According to the experimental validation results, the accuracy and robustness of the single-sensor SLAM algorithm can be improved.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 April 2024

Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…

Abstract

Purpose

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.

Design/methodology/approach

This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.

Findings

Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.

Originality/value

Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 December 2022

Bright Awuku, Eric Asa, Edmund Baffoe-Twum and Adikie Essegbey

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation…

Abstract

Purpose

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation agencies. Even with the existing research undertaken on the subject, the problem of inaccurate estimation of highway bid items still exists. This paper aims to assess the accuracy of the cost estimation methods employed in the selected studies to provide insights into how well they perform empirically. Additionally, this research seeks to identify, synthesize and assess the impact of the factors affecting highway unit prices because they affect the total cost of highway construction costs.

Design/methodology/approach

This paper systematically searched, selected and reviewed 105 papers from Scopus, Google Scholar, American Society of Civil Engineers (ASCE), Transportation Research Board (TRB) and Science Direct (SD) on conceptual cost estimation of highway bid items. This study used content and nonparametric statistical analyses to determine research trends, identify, categorize the factors influencing highway unit prices and assess the combined performance of conceptual cost prediction models.

Findings

Findings from the trend analysis showed that between 1983 and 2019 North America, Asia, Europe and the Middle East contributed the most to improving highway cost estimation research. Aggregating the quantitative results and weighting the findings using each study's sample size revealed that the average error between the actual and the estimated project costs of Monte-Carlo simulation models (5.49%) performed better compared to the Bayesian model (5.95%), support vector machines (6.03%), case-based reasoning (11.69%), artificial neural networks (12.62%) and regression models (13.96%). This paper identified 41 factors and was grouped into three categories, namely: (1) factors relating to project characteristics; (2) organizational factors and (3) estimate factors based on the common classification used in the selected papers. The mean ranking analysis showed that most of the selected papers used project-specific factors more when estimating highway construction bid items than the other factors.

Originality/value

This paper contributes to the body of knowledge by analyzing and comparing the performance of highway cost estimation models, identifying and categorizing a comprehensive list of cost drivers to stimulate future studies in improving highway construction cost estimates.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 February 2024

Neeraj Joshi, Sudeep R. Bapat and Raghu Nandan Sengupta

The purpose of this paper is to develop optimal estimation procedures for the stress-strength reliability (SSR) parameter R = P(X > Y) of an inverse Pareto distribution (IPD).

Abstract

Purpose

The purpose of this paper is to develop optimal estimation procedures for the stress-strength reliability (SSR) parameter R = P(X > Y) of an inverse Pareto distribution (IPD).

Design/methodology/approach

We estimate the SSR parameter R = P(X > Y) of the IPD under the minimum risk and bounded risk point estimation problems, where X and Y are strength and stress variables, respectively. The total loss function considered is a combination of estimation error (squared error) and cost, utilizing which we minimize the associated risk in order to estimate the reliability parameter. As no fixed-sample technique can be used to solve the proposed point estimation problems, we propose some “cost and time efficient” adaptive sampling techniques (two-stage and purely sequential sampling methods) to tackle them.

Findings

We state important results based on the proposed sampling methodologies. These include estimations of the expected sample size, standard deviation (SD) and mean square error (MSE) of the terminal estimator of reliability parameters. The theoretical values of reliability parameters and the associated sample size and risk functions are well supported by exhaustive simulation analyses. The applicability of our suggested methodology is further corroborated by a real dataset based on insurance claims.

Originality/value

This study will be useful for scenarios where various logistical concerns are involved in the reliability analysis. The methodologies proposed in this study can reduce the number of sampling operations substantially and save time and cost to a great extent.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 February 2024

Muhammad Nabeel Siddiqui, Xiaolu Zhu, Hanad Rasool, Muhammad Bilal Afzal and Nigar Ahmed

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to…

Abstract

Purpose

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to achieve trajectory tracking of quadrotor in the Cartesian plane.

Design/methodology/approach

To achieve trajectory tracking control, firstly the decoupled rotational and translational model of quadrotor are modified by introducing backstepped state-space variables. In the second step, robust integral sliding mode control is designed based on the proportional-integral-derivative (PID) technique. In the third step, a DO is constructed. In next step, the measurable outputs, i.e. rotational and translational state variables, are used to design the LPO. Finally, in the control algorithm all state variables and its rates are replaced with its estimates obtained using the state-observer.

Findings

The finding includes output-feedback control (OFC) algorithm designed by using a LPO. A modified backstepping model for rotational and rotational systems is developed prior to the design of integral sliding mode control based on PID technique. Unlike traditional high-gain observers (HGO), this paper used the LPO for state estimation of quadrotor systems to solve the problem of peaking phenomenon in HGO. Furthermore, a nonlinear DO is designed such that it attenuates disturbance with unknown magnitude and frequency. Moreover, a chattering reduction criterion has been introduced to solve the inherited chattering issue of controllers based on sliding mode technique.

Practical implications

This paper presents input and output data-driven model-free control algorithm. That is, only input and output of the quadrotor model are required to achieve the trajectory tracking control. Therefore, for practical implementation, the number of on-board sensor is reduced.

Originality/value

Although extensive research has been done for designing OFC algorithms for quadrotor, LPO has never been implemented for the rotational and translational state estimations of quadrotor. Furthermore, the mathematical model of rotational and translational systems is modified by using backstepped variables followed by the controller designed using PID and integral sliding mode control technique. Moreover, a DO is developed for attenuation of disturbance with unknown bound, magnitude and frequency.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 June 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Fabrizio Marignetti and Pierluigi Siano

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as…

Abstract

Purpose

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion). The dynamic model of VSI-PMSMs is multivariable and exhibits complicated nonlinear dynamics. The inverters’ currents, which are generated through a pulsewidth modulation process, are used to control the stator currents of the PMSM, which in turn control the rotational speed of this electric machine. So far, several nonlinear control schemes for VSI-PMSMs have been developed, having as primary objectives the precise tracking of setpoints by the system’s state variables and robustness to parametric changes or external perturbations. However, little has been done for the solution of the associated nonlinear optimal control problem. The purpose of this study/paper is to provide a novel nonlinear optimal control method for VSI-fed three-phase PMSMs.

Design/methodology/approach

The present article proposes a nonlinear optimal control approach for VSI-PMSMs. The nonlinear dynamic model of VSI-PMSMs undergoes approximate linearization around a temporary operating point, which is recomputed at each iteration of the control method. This temporary operating point is defined by the present value of the voltage source inverter-fed PMSM state vector and by the last sampled value of the motor’s control input vector. The linearization relies on Taylor series expansion and the calculation of the system’s Jacobian matrices. For the approximately linearized model of the voltage source inverter-fed PMSM, an H-infinity feedback controller is designed. For the computation of the controller’s feedback gains, an algebraic Riccati equation is iteratively solved at each time-step of the control method. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, to implement state estimation-based control for this system, the H-infinity Kalman filter is proposed as a state observer. The proposed control method achieves fast and accurate tracking of the reference setpoints of the VSI-fed PMSM under moderate variations of the control inputs.

Findings

The proposed H-infinity controller provides the solution to the optimal control problem for the VSI-PMSM system under model uncertainty and external perturbations. Actually, this controller represents a min–max differential game taking place between the control inputs, which try to minimize a cost function that contains a quadratic term of the state vector’s tracking error, the model uncertainty, and exogenous disturbance terms, which try to maximize this cost function. To select the feedback gains of the stabilizing feedback controller, an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. To analyze the stability properties of the control scheme, the Lyapunov method is used. It is proven that the VSI-PMSM loop has the H-infinity tracking performance property, which signifies robustness against model uncertainty and disturbances. Moreover, under moderate conditions, the global asymptotic stability properties of this control scheme are proven. The proposed control method achieves fast tracking of reference setpoints by the VSI-PMSM state variables, while keeping also moderate the variations of the control inputs. The latter property indicates that energy consumption by the VSI-PMSM control loop can be minimized.

Practical implications

The proposed nonlinear optimal control method for the VSI-PMSM system exhibits several advantages: Comparing to global linearization-based control methods, such as Lie algebra-based control or differential flatness theory-based control, the nonlinear optimal control scheme avoids complicated state variable transformations (diffeomorphisms). Besides, its control inputs are applied directly to the initial nonlinear model of the VSI-PMSM system, and thus inverse transformations and the related singularity problems are also avoided. Compared with backstepping control, the nonlinear optimal control scheme does not require the state-space description of the controlled system to be found in the triangular (backstepping integral) form. Compared with sliding-mode control, there is no need to define in an often intuitive manner the sliding surfaces of the controlled system. Finally, compared with local model-based control, the article’s nonlinear optimal control method avoids linearization around multiple operating points and does not need the solution of multiple Riccati equations or LMIs. As a result of this, the nonlinear optimal control method requires less computational effort.

Social implications

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion), The solution of the associated nonlinear control problem enables reliable and precise functioning of VSI-fd PMSMs. This in turn has a positive impact in all related industrial applications and in tasks of electric traction and propulsion where VSI-fed PMSMs are used. It is particularly important for electric transportation systems and for the wide use of electric vehicles as expected by green policies which aim at deploying electromotion and at achieving the Net Zero objective.

Originality/value

Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system’s state vector and by the last sampled value of the control input vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation, which is used for computing the feedback gains of the controller, is new, as is the global stability proof for this control method. Comparing with nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems that can be transformed to the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 5000