Search results

1 – 7 of 7
Open Access
Article
Publication date: 5 March 2021

Xuan Ji, Jiachen Wang and Zhijun Yan

Stock price prediction is a hot topic and traditional prediction methods are usually based on statistical and econometric models. However, these models are difficult to deal with…

16658

Abstract

Purpose

Stock price prediction is a hot topic and traditional prediction methods are usually based on statistical and econometric models. However, these models are difficult to deal with nonstationary time series data. With the rapid development of the internet and the increasing popularity of social media, online news and comments often reflect investors’ emotions and attitudes toward stocks, which contains a lot of important information for predicting stock price. This paper aims to develop a stock price prediction method by taking full advantage of social media data.

Design/methodology/approach

This study proposes a new prediction method based on deep learning technology, which integrates traditional stock financial index variables and social media text features as inputs of the prediction model. This study uses Doc2Vec to build long text feature vectors from social media and then reduce the dimensions of the text feature vectors by stacked auto-encoder to balance the dimensions between text feature variables and stock financial index variables. Meanwhile, based on wavelet transform, the time series data of stock price is decomposed to eliminate the random noise caused by stock market fluctuation. Finally, this study uses long short-term memory model to predict the stock price.

Findings

The experiment results show that the method performs better than all three benchmark models in all kinds of evaluation indicators and can effectively predict stock price.

Originality/value

In this paper, this study proposes a new stock price prediction model that incorporates traditional financial features and social media text features which are derived from social media based on deep learning technology.

Details

International Journal of Crowd Science, vol. 5 no. 1
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 18 July 2022

Youakim Badr

In this research, the authors demonstrate the advantage of reinforcement learning (RL) based intrusion detection systems (IDS) to solve very complex problems (e.g. selecting input…

1277

Abstract

Purpose

In this research, the authors demonstrate the advantage of reinforcement learning (RL) based intrusion detection systems (IDS) to solve very complex problems (e.g. selecting input features, considering scarce resources and constrains) that cannot be solved by classical machine learning. The authors include a comparative study to build intrusion detection based on statistical machine learning and representational learning, using knowledge discovery in databases (KDD) Cup99 and Installation Support Center of Expertise (ISCX) 2012.

Design/methodology/approach

The methodology applies a data analytics approach, consisting of data exploration and machine learning model training and evaluation. To build a network-based intrusion detection system, the authors apply dueling double deep Q-networks architecture enabled with costly features, k-nearest neighbors (K-NN), support-vector machines (SVM) and convolution neural networks (CNN).

Findings

Machine learning-based intrusion detection are trained on historical datasets which lead to model drift and lack of generalization whereas RL is trained with data collected through interactions. RL is bound to learn from its interactions with a stochastic environment in the absence of a training dataset whereas supervised learning simply learns from collected data and require less computational resources.

Research limitations/implications

All machine learning models have achieved high accuracy values and performance. One potential reason is that both datasets are simulated, and not realistic. It was not clear whether a validation was ever performed to show that data were collected from real network traffics.

Practical implications

The study provides guidelines to implement IDS with classical supervised learning, deep learning and RL.

Originality/value

The research applied the dueling double deep Q-networks architecture enabled with costly features to build network-based intrusion detection from network traffics. This research presents a comparative study of reinforcement-based instruction detection with counterparts built with statistical and representational machine learning.

Open Access
Article
Publication date: 15 August 2023

Doreen Nkirote Bundi

The purpose of this study is to examine the state of research into adoption of machine learning systems within the health sector, to identify themes that have been studied and…

1066

Abstract

Purpose

The purpose of this study is to examine the state of research into adoption of machine learning systems within the health sector, to identify themes that have been studied and observe the important gaps in the literature that can inform a research agenda going forward.

Design/methodology/approach

A systematic literature strategy was utilized to identify and analyze scientific papers between 2012 and 2022. A total of 28 articles were identified and reviewed.

Findings

The outcomes reveal that while advances in machine learning have the potential to improve service access and delivery, there have been sporadic growth of literature in this area which is perhaps surprising given the immense potential of machine learning within the health sector. The findings further reveal that themes such as recordkeeping, drugs development and streamlining of treatment have primarily been focused on by the majority of authors in this area.

Research limitations/implications

The search was limited to journal articles published in English, resulting in the exclusion of studies disseminated through alternative channels, such as conferences, and those published in languages other than English. Considering that scholars in developing nations may encounter less difficulty in disseminating their work through alternative channels and that numerous emerging nations employ languages other than English, it is plausible that certain research has been overlooked in the present investigation.

Originality/value

This review provides insights into future research avenues for theory, content and context on adoption of machine learning within the health sector.

Details

Digital Transformation and Society, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0761

Keywords

Open Access
Article
Publication date: 6 April 2023

Karlo Puh and Marina Bagić Babac

Predicting the stock market's prices has always been an interesting topic since its closely related to making money. Recently, the advances in natural language processing (NLP…

4483

Abstract

Purpose

Predicting the stock market's prices has always been an interesting topic since its closely related to making money. Recently, the advances in natural language processing (NLP) have opened new perspectives for solving this task. The purpose of this paper is to show a state-of-the-art natural language approach to using language in predicting the stock market.

Design/methodology/approach

In this paper, the conventional statistical models for time-series prediction are implemented as a benchmark. Then, for methodological comparison, various state-of-the-art natural language models ranging from the baseline convolutional and recurrent neural network models to the most advanced transformer-based models are developed, implemented and tested.

Findings

Experimental results show that there is a correlation between the textual information in the news headlines and stock price prediction. The model based on the GRU (gated recurrent unit) cell with one linear layer, which takes pairs of the historical prices and the sentiment score calculated using transformer-based models, achieved the best result.

Originality/value

This study provides an insight into how to use NLP to improve stock price prediction and shows that there is a correlation between news headlines and stock price prediction.

Details

American Journal of Business, vol. 38 no. 2
Type: Research Article
ISSN: 1935-5181

Keywords

Open Access
Article
Publication date: 10 May 2023

Marko Kureljusic and Erik Karger

Accounting information systems are mainly rule-based, and data are usually available and well-structured. However, many accounting systems are yet to catch up with current…

76229

Abstract

Purpose

Accounting information systems are mainly rule-based, and data are usually available and well-structured. However, many accounting systems are yet to catch up with current technological developments. Thus, artificial intelligence (AI) in financial accounting is often applied only in pilot projects. Using AI-based forecasts in accounting enables proactive management and detailed analysis. However, thus far, there is little knowledge about which prediction models have already been evaluated for accounting problems. Given this lack of research, our study aims to summarize existing findings on how AI is used for forecasting purposes in financial accounting. Therefore, the authors aim to provide a comprehensive overview and agenda for future researchers to gain more generalizable knowledge.

Design/methodology/approach

The authors identify existing research on AI-based forecasting in financial accounting by conducting a systematic literature review. For this purpose, the authors used Scopus and Web of Science as scientific databases. The data collection resulted in a final sample size of 47 studies. These studies were analyzed regarding their forecasting purpose, sample size, period and applied machine learning algorithms.

Findings

The authors identified three application areas and presented details regarding the accuracy and AI methods used. Our findings show that sociotechnical and generalizable knowledge is still missing. Therefore, the authors also develop an open research agenda that future researchers can address to enable the more frequent and efficient use of AI-based forecasts in financial accounting.

Research limitations/implications

Owing to the rapid development of AI algorithms, our results can only provide an overview of the current state of research. Therefore, it is likely that new AI algorithms will be applied, which have not yet been covered in existing research. However, interested researchers can use our findings and future research agenda to develop this field further.

Practical implications

Given the high relevance of AI in financial accounting, our results have several implications and potential benefits for practitioners. First, the authors provide an overview of AI algorithms used in different accounting use cases. Based on this overview, companies can evaluate the AI algorithms that are most suitable for their practical needs. Second, practitioners can use our results as a benchmark of what prediction accuracy is achievable and should strive for. Finally, our study identified several blind spots in the research, such as ensuring employee acceptance of machine learning algorithms in companies. However, companies should consider this to implement AI in financial accounting successfully.

Originality/value

To the best of our knowledge, no study has yet been conducted that provided a comprehensive overview of AI-based forecasting in financial accounting. Given the high potential of AI in accounting, the authors aimed to bridge this research gap. Moreover, our cross-application view provides general insights into the superiority of specific algorithms.

Details

Journal of Applied Accounting Research, vol. 25 no. 1
Type: Research Article
ISSN: 0967-5426

Keywords

Open Access
Article
Publication date: 21 June 2022

Abhishek Das and Mihir Narayan Mohanty

In time and accurate detection of cancer can save the life of the person affected. According to the World Health Organization (WHO), breast cancer occupies the most frequent…

Abstract

Purpose

In time and accurate detection of cancer can save the life of the person affected. According to the World Health Organization (WHO), breast cancer occupies the most frequent incidence among all the cancers whereas breast cancer takes fifth place in the case of mortality numbers. Out of many image processing techniques, certain works have focused on convolutional neural networks (CNNs) for processing these images. However, deep learning models are to be explored well.

Design/methodology/approach

In this work, multivariate statistics-based kernel principal component analysis (KPCA) is used for essential features. KPCA is simultaneously helpful for denoising the data. These features are processed through a heterogeneous ensemble model that consists of three base models. The base models comprise recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU). The outcomes of these base learners are fed to fuzzy adaptive resonance theory mapping (ARTMAP) model for decision making as the nodes are added to the F_2ˆa layer if the winning criteria are fulfilled that makes the ARTMAP model more robust.

Findings

The proposed model is verified using breast histopathology image dataset publicly available at Kaggle. The model provides 99.36% training accuracy and 98.72% validation accuracy. The proposed model utilizes data processing in all aspects, i.e. image denoising to reduce the data redundancy, training by ensemble learning to provide higher results than that of single models. The final classification by a fuzzy ARTMAP model that controls the number of nodes depending upon the performance makes robust accurate classification.

Research limitations/implications

Research in the field of medical applications is an ongoing method. More advanced algorithms are being developed for better classification. Still, the scope is there to design the models in terms of better performance, practicability and cost efficiency in the future. Also, the ensemble models may be chosen with different combinations and characteristics. Only signal instead of images may be verified for this proposed model. Experimental analysis shows the improved performance of the proposed model. This method needs to be verified using practical models. Also, the practical implementation will be carried out for its real-time performance and cost efficiency.

Originality/value

The proposed model is utilized for denoising and to reduce the data redundancy so that the feature selection is done using KPCA. Training and classification are performed using heterogeneous ensemble model designed using RNN, LSTM and GRU as base classifiers to provide higher results than that of single models. Use of adaptive fuzzy mapping model makes the final classification accurate. The effectiveness of combining these methods to a single model is analyzed in this work.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 3 February 2020

Kai Zheng, Xianjun Yang, Yilei Wang, Yingjie Wu and Xianghan Zheng

The purpose of this paper is to alleviate the problem of poor robustness and over-fitting caused by large-scale data in collaborative filtering recommendation algorithms.

Abstract

Purpose

The purpose of this paper is to alleviate the problem of poor robustness and over-fitting caused by large-scale data in collaborative filtering recommendation algorithms.

Design/methodology/approach

Interpreting user behavior from the probabilistic perspective of hidden variables is helpful to improve robustness and over-fitting problems. Constructing a recommendation network by variational inference can effectively solve the complex distribution calculation in the probabilistic recommendation model. Based on the aforementioned analysis, this paper uses variational auto-encoder to construct a generating network, which can restore user-rating data to solve the problem of poor robustness and over-fitting caused by large-scale data. Meanwhile, for the existing KL-vanishing problem in the variational inference deep learning model, this paper optimizes the model by the KL annealing and Free Bits methods.

Findings

The effect of the basic model is considerably improved after using the KL annealing or Free Bits method to solve KL vanishing. The proposed models evidently perform worse than competitors on small data sets, such as MovieLens 1 M. By contrast, they have better effects on large data sets such as MovieLens 10 M and MovieLens 20 M.

Originality/value

This paper presents the usage of the variational inference model for collaborative filtering recommendation and introduces the KL annealing and Free Bits methods to improve the basic model effect. Because the variational inference training denotes the probability distribution of the hidden vector, the problem of poor robustness and overfitting is alleviated. When the amount of data is relatively large in the actual application scenario, the probability distribution of the fitted actual data can better represent the user and the item. Therefore, using variational inference for collaborative filtering recommendation is of practical value.

Details

International Journal of Crowd Science, vol. 4 no. 1
Type: Research Article
ISSN: 2398-7294

Keywords

1 – 7 of 7