Search results

1 – 10 of 48
Article
Publication date: 13 February 2024

Wenqi Mao, Kexin Ran, Ting-Kwei Wang, Anyuan Yu, Hongyue Lv and Jieh-Haur Chen

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for…

Abstract

Purpose

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for transportation cost optimization. Traditional irregular component loading methods are based on past performance, which frequently wastes vehicle space. Additionally, real-time road conditions, precast component assembly times, and delivery vehicle waiting times due to equipment constraints at the construction site affect transportation time and overall transportation costs. Therefore, this paper aims to provide an optimization model for Just-In-Time (JIT) delivery of precast components considering 3D loading constraints, real-time road conditions and assembly time.

Design/methodology/approach

In order to propose a JIT (just-in-time) delivery optimization model, the effects of the sizes of irregular precast components, the assembly time, and the loading methods are considered in the 3D loading constraint model. In addition, for JIT delivery, incorporating real-time road conditions in the transportation process is essential to mitigate delays in the delivery of precast components. The 3D precast component loading problem is solved by using a hybrid genetic algorithm which mixes the genetic algorithm and the simulated annealing algorithm.

Findings

A real case study was used to validate the JIT delivery optimization model. The results indicated this study contributes to the optimization of strategies for loading irregular precast components and the reduction of transportation costs by 5.38%.

Originality/value

This study establishes a JIT delivery optimization model with the aim of reducing transportation costs by considering 3D loading constraints, real-time road conditions and assembly time. The irregular precast component is simplified into 3D bounding box and loaded with three-space division heuristic packing algorithm. In addition, the hybrid algorithm mixing the genetic algorithm and the simulated annealing algorithm is to solve the 3D container loading problem, which provides both global search capability and the ability to perform local searching. The JIT delivery optimization model can provide decision-makers with a more comprehensive and economical strategy for loading and transporting irregular precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 April 2023

Qiang Du, Xiaomin Qi, Patrick X.W. Zou and Yanmin Zhang

The purpose of this paper is to develop a bi-objective optimization framework to select prefabricated construction service composition. An improved algorithm-genetic simulated…

Abstract

Purpose

The purpose of this paper is to develop a bi-objective optimization framework to select prefabricated construction service composition. An improved algorithm-genetic simulated annealing algorithm (GSA) is employed to demonstrate the application of the framework.

Design/methodology/approach

The weighted aggregate multi-dimensional collaborative relationship is used to quantitatively evaluate the synergistic effect. The quality of service is measured using the same method. The research proposed a service combination selection framework of prefabricated construction that comprehensively considers the quality of service and synergistic effect. The framework is demonstrated by using a GSA that can accept poor solutions with a certain probability. Furthermore, GSA is compared with the genetic algorithm (GA), simulated annealing algorithm (SA) and particle swarm optimization algorithm (PSO) to validate the performance.

Findings

The results indicated that GSA has the largest optimal fitness value and synergistic effect compared with other algorithms, and the convergence time and convergence iteration of the improved algorithm are generally at a low level.

Originality/value

The contribution of this study is that the proposed framework enables project managers to clarify the interactions of the prefabricated construction process and provides guidance for project collaborative management. In addition, GSA helps to improve the probability of successful collaboration between potential partners, therefore enhancing client satisfaction.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 April 2024

Zhanghuang Xie, Xiaomei Li, Dian Huang, Andrea Appolloni and Kan Fang

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution…

Abstract

Purpose

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution approaches to solve such problem.

Design/methodology/approach

We propose a mathematical formulation for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines, and develop a simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length to solve the problem.

Findings

The simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length (SAHH-osla) that we proposed can be quite efficient in solving the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Originality/value

To the best of our knowledge, we are one of the first to consider both cost-related and time-related criteria for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 27 February 2024

Jianhua Zhang, Liangchen Li, Fredrick Ahenkora Boamah, Dandan Wen, Jiake Li and Dandan Guo

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of…

Abstract

Purpose

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of the existing research in the industry, this paper proposes a case-adaptation optimization algorithm to support the effective application of tacit knowledge resources.

Design/methodology/approach

The attribute simplification algorithm based on the forward search strategy in the neighborhood decision information system is implemented to realize the vertical dimensionality reduction of the case base, and the fuzzy C-mean (FCM) clustering algorithm based on the simulated annealing genetic algorithm (SAGA) is implemented to compress the case base horizontally with multiple decision classes. Then, the subspace K-nearest neighbors (KNN) algorithm is used to induce the decision rules for the set of adapted cases to complete the optimization of the adaptation model.

Findings

The findings suggest the rapid enrichment of data, information and tacit knowledge in the field of practice has led to low efficiency and low utilization of knowledge dissemination, and this algorithm can effectively alleviate the problems of users falling into “knowledge disorientation” in the era of the knowledge economy.

Practical implications

This study provides a model with case knowledge that meets users’ needs, thereby effectively improving the application of the tacit knowledge in the explicit case base and the problem-solving efficiency of knowledge users.

Social implications

The adaptation model can serve as a stable and efficient prediction model to make predictions for the effects of the many logistics and e-commerce enterprises' plans.

Originality/value

This study designs a multi-decision class case-adaptation optimization study based on forward attribute selection strategy-neighborhood rough sets (FASS-NRS) and simulated annealing genetic algorithm-fuzzy C-means (SAGA-FCM) for tacit knowledgeable exogenous cases. By effectively organizing and adjusting tacit knowledge resources, knowledge service organizations can maintain their competitive advantages. The algorithm models established in this study develop theoretical directions for a multi-decision class case-adaptation optimization study of tacit knowledge.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 14 November 2023

Libiao Bai, Mengqin Yang, Tong Pan and Yichen Sun

Selecting and scheduling optimal project portfolio simultaneously is a complex decision-making problem faced by organizations to realize the strategy. However, dynamic synergy…

Abstract

Purpose

Selecting and scheduling optimal project portfolio simultaneously is a complex decision-making problem faced by organizations to realize the strategy. However, dynamic synergy relationships among projects complicate this problem. This study aims at constructing a project portfolio selection and scheduling (PPSS) model while quantifying the dynamic synergetic effects to provide decision support for managing PPSS problems.

Design/methodology/approach

This study develops a mathematical model for PPSS with the objective of maximal project portfolio benefits (PPBs). To make the results align with the strategy, comprehensive PPBs are divided into financial and non-financial aspects based on the balanced scorecard. Then, synergy benefits evolve dynamically in the time horizon, and system dynamics is employed to quantify them. Lastly, a case example is conducted to verify the applicability of the proposed model.

Findings

The proposed model is an applicable model for PPSS while incorporating dynamic synergy. It can help project managers obtain the results that which project should be selected and when it should start while achieving optimal PPBs.

Originality/value

This study complements prior PPSS research in two aspects. First, financial and non-financial PPBs are designed as new criteria for PPSS, making the results follow the strategy. Second, this study illuminates the dynamic characteristic of synergy and quantifies the synergetic effect. The proposed model provides insights into managing a PPSS effectively.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 25 January 2024

Atef Gharbi

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR)…

Abstract

Purpose

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR). The specific objectives and purposes outlined in the paper include: introducing a new methodology that combines Q-learning with dynamic reward to improve the efficiency of path planning and obstacle avoidance. Enhancing the navigation of MR through unfamiliar environments by reducing blind exploration and accelerating the convergence to optimal solutions and demonstrating through simulation results that the proposed method, dynamic reward-enhanced Q-learning (DRQL), outperforms existing approaches in terms of achieving convergence to an optimal action strategy more efficiently, requiring less time and improving path exploration with fewer steps and higher average rewards.

Design/methodology/approach

The design adopted in this paper to achieve its purposes involves the following key components: (1) Combination of Q-learning and dynamic reward: the paper’s design integrates Q-learning, a popular reinforcement learning technique, with dynamic reward mechanisms. This combination forms the foundation of the approach. Q-learning is used to learn and update the robot’s action-value function, while dynamic rewards are introduced to guide the robot’s actions effectively. (2) Data accumulation during navigation: when a MR navigates through an unfamiliar environment, it accumulates experience data. This data collection is a crucial part of the design, as it enables the robot to learn from its interactions with the environment. (3) Dynamic reward integration: dynamic reward mechanisms are integrated into the Q-learning process. These mechanisms provide feedback to the robot based on its actions, guiding it to make decisions that lead to better outcomes. Dynamic rewards help reduce blind exploration, which can be time-consuming and inefficient and promote faster convergence to optimal solutions. (4) Simulation-based evaluation: to assess the effectiveness of the proposed approach, the design includes a simulation-based evaluation. This evaluation uses simulated environments and scenarios to test the performance of the DRQL method. (5) Performance metrics: the design incorporates performance metrics to measure the success of the approach. These metrics likely include measures of convergence speed, exploration efficiency, the number of steps taken and the average rewards obtained during the robot’s navigation.

Findings

The findings of the paper can be summarized as follows: (1) Efficient path planning and obstacle avoidance: the paper’s proposed approach, DRQL, leads to more efficient path planning and obstacle avoidance for MR. This is achieved through the combination of Q-learning and dynamic reward mechanisms, which guide the robot’s actions effectively. (2) Faster convergence to optimal solutions: DRQL accelerates the convergence of the MR to optimal action strategies. Dynamic rewards help reduce the need for blind exploration, which typically consumes time and this results in a quicker attainment of optimal solutions. (3) Reduced exploration time: the integration of dynamic reward mechanisms significantly reduces the time required for exploration during navigation. This reduction in exploration time contributes to more efficient and quicker path planning. (4) Improved path exploration: the results from the simulations indicate that the DRQL method leads to improved path exploration in unknown environments. The robot takes fewer steps to reach its destination, which is a crucial indicator of efficiency. (5) Higher average rewards: the paper’s findings reveal that MR using DRQL receive higher average rewards during their navigation. This suggests that the proposed approach results in better decision-making and more successful navigation.

Originality/value

The paper’s originality stems from its unique combination of Q-learning and dynamic rewards, its focus on efficiency and speed in MR navigation and its ability to enhance path exploration and average rewards. These original contributions have the potential to advance the field of mobile robotics by addressing critical challenges in path planning and obstacle avoidance.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 5 April 2024

Liyi Zhang, Mingyue Fu, Teng Fei, Ming K. Lim and Ming-Lang Tseng

This study reduces carbon emission in logistics distribution to realize the low-carbon site optimization for a cold chain logistics distribution center problem.

Abstract

Purpose

This study reduces carbon emission in logistics distribution to realize the low-carbon site optimization for a cold chain logistics distribution center problem.

Design/methodology/approach

This study involves cooling, commodity damage and carbon emissions and establishes the site selection model of low-carbon cold chain logistics distribution center aiming at minimizing total cost, and grey wolf optimization algorithm is used to improve the artificial fish swarm algorithm to solve a cold chain logistics distribution center problem.

Findings

The optimization results and stability of the improved algorithm are significantly improved and compared with other intelligent algorithms. The result is confirmed to use the Beijing-Tianjin-Hebei region site selection. This study reduces composite cost of cold chain logistics and reduces damage to environment to provide a new idea for developing cold chain logistics.

Originality/value

This study contributes to propose an optimization model of low-carbon cold chain logistics site by considering various factors affecting cold chain products and converting carbon emissions into costs. Prior studies are lacking to take carbon emissions into account in the logistics process. The main trend of current economic development is low-carbon and the logistics distribution is an energy consumption and high carbon emissions.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 22 September 2023

Chengkuan Zeng, Shiming Chen and Chongjun Yan

This study addresses the production optimization of a cellular manufacturing system (CMS) in magnetic production enterprises. Magnetic products and raw materials are more critical…

Abstract

Purpose

This study addresses the production optimization of a cellular manufacturing system (CMS) in magnetic production enterprises. Magnetic products and raw materials are more critical to transport than general products because the attraction or repulsion between magnetic poles can easily cause traffic jams. This study needs to address a method to promote the scheduling efficiency of the problem.

Design/methodology/approach

To address this problem, this study formulated a mixed-integer linear programming (MILP) model to describe the problem and proposed an auction and negotiation-based approach with a local search to solve it. Auction- and negotiation-based approaches can obtain feasible and high-quality solutions. A local search operator was proposed to optimize the feasible solutions using an improved conjunctive graph model.

Findings

Verification tests were performed on a series of numerical examples. The results demonstrated that the proposed auction and negotiation-based approach with a local search operator is better than existing solution methods for the problem identified. Statistical analysis of the experiment results using the Statistical Package for the Social Sciences (SPSS) software demonstrated that the proposed approach is efficient, stable and suitable for solving large-scale numerical instances.

Originality/value

An improved auction and negotiation-based approach was proposed; The conjunctive graph model was also improved to describe the problem of CMS with traffic jam constraint and build the local search operator; The authors’ proposed approach can get better solution than the existing algorithms by testing benchmark instances and real-world instances from enterprises.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 February 2023

Sajeda Al-Hadidi, Ghaleb Sweis, Waleed Abu-Khader, Ghaida Abu-Rumman and Rateb Sweis

Despite the enormous need to succeed in the urban model, scientists and policymakers should work consistently to create blueprints to regulate urbanization. The absence of…

Abstract

Purpose

Despite the enormous need to succeed in the urban model, scientists and policymakers should work consistently to create blueprints to regulate urbanization. The absence of coordination between the crucial requirements and the regional strategies of the local authorities leads to a lack of conformance in urban development. The purpose of this paper is to address this issue.

Design/methodology/approach

This study intends to manage future urban growth patterns using integrated methods and then employ the results in the genetic algorithm (GA) model to considerably improve growth behavior. Multi-temporal land-use datasets have been derived from remotely sensed images for the years 1990, 2000, 2010 and 2020. Urban growth patterns and processes were then analyzed with land-use-and-land-cover dynamics. Results were examined for simulation and utilization of the GA.

Findings

Model parameters were derived and evaluated, and a preliminary assessment of the effective coefficient in the formation of urbanization is analyzed, showing the city's urbanization pattern has followed along with the transportation infrastructure and outward growth, and the scattering rates are high, with an increase of 5.64% in building area associated with a decrease in agricultural lands and rangelands.

Originality/value

The research achieved a considerable improvement over the growth behavior. The conducted research design was the first of its type in that field to be executed to any specific growth pattern parameters in terms of regulating and policymaking. The method has integrated various artificial intelligence models to monitor, measure and optimize the projected growth by applying this design. Other research on the area was limited to projecting the future of Amman as it is an urbanized distressed city.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 February 2023

Lin-Lin Xie, Yajiao Chen, Sisi Wu, Rui-Dong Chang and Yilong Han

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to…

Abstract

Purpose

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to focus on finding suitable algorithms to solve various scheduling problems and fail to find the potential scheduling rules in these optimal or near-optimal solutions, that is, the possible intrinsic relationships between attributes related to the scheduling of activity sequences. Data mining (DM) is used to analyze and interpret data to obtain valuable information stored in large-scale data. The goal of this paper is to use DM to discover scheduling concepts and obtain a set of rules that approximate effective solutions to resource-constrained project scheduling problems. These rules do not require any search and simulation, which have extremely low time complexity and support real-time decision-making to improve planning/scheduling.

Design/methodology/approach

The resource-constrained project scheduling problem can be described as scheduling a group of interrelated activities to optimize the project completion time and other objectives while satisfying the activity priority relationship and resource constraints. This paper proposes a new approach to solve the resource-constrained project scheduling problem by combining DM technology and the genetic algorithm (GA). More specifically, the GA is used to generate various optimal project scheduling schemes, after that C4.5 decision tree (DT) is adopted to obtain valuable knowledge from these schemes for further predicting and solving new scheduling problems.

Findings

In this study, the authors use GA and DM technology to analyze and extract knowledge from a large number of scheduling schemes, and determine the scheduling rule set to minimize the completion time. In order to verify the application effect of the proposed DT classification model, the J30, J60 and J120 datasets in PSPLIB are used to test the validity of the scheduling rules. The results show that DT can readily duplicate the excellent performance of GA for scheduling problems of different scales. In addition, the DT prediction model developed in this study is applied to a high-rise residential project consisting of 117 activities. The results show that compared with the completion time obtained by GA, the DT model can realize rapid adjustment of project scheduling problem to deal with the dynamic environment interference. In a word, the data-based approach is feasible, practical and effective. It not only captures the knowledge contained in the known optimal scheduling schemes, but also helps to provide a flexible scheduling decision-making approach for project implementation.

Originality/value

This paper proposes a novel knowledge-based project scheduling approach. In previous studies, intelligent optimization algorithm is often used to solve the project scheduling problem. However, although these intelligent optimization algorithms can generate a set of effective solutions for problem instances, they are unable to explain the process of decision-making, nor can they identify the characteristics of good scheduling decisions generated by the optimization process. Moreover, their calculation is slow and complex, which is not suitable for planning and scheduling complex projects. In this study, the set of effective solutions of problem instances is taken as the training dataset of DM algorithm, and the extracted scheduling rules can provide the prediction and solution of new scheduling problems. The proposed method focuses on identifying the key parameters of a specific dynamic scheduling environment, which can not only reproduces the scheduling performance of the original algorithm well, but also has the ability to make decisions quickly under the dynamic interference construction scenario. It is helpful for project managers to implement quick decisions in response to construction emergencies, which is of great practical significance for improving the flexibility and efficiency of construction projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 48