Search results

1 – 2 of 2
Article
Publication date: 9 June 2023

Shucai Yang, Shiwen Xing, Yang Yu, Pei Han, Chaoyang Guo and Lukai Liu

It was verified that the micro-texture in the front and back of the tool at the same time had a positive effect on improving the milling behavior and surface quality of the tool…

Abstract

Purpose

It was verified that the micro-texture in the front and back of the tool at the same time had a positive effect on improving the milling behavior and surface quality of the tool. The purpose of this study is to explore the rationality of simultaneous placement of micro-textures on the front and rear surfaces of ball-end milling cutters, analyze the influence of micro-texture parameters on tool milling behavior and workpiece surface quality, reveal its internal mechanism, and obtain the best micro-texture parameters by optimization.

Design/methodology/approach

First, the mechanism of micro-texture is studied based on the energy loss model. Second, the orthogonal experiment is designed to analyze the influence of micro-texture parameters on tool milling behavior and reveal its mechanism by combining simulation technology and cutting experiment. Finally, the parameters are optimized based on the artificial bee colony algorithm.

Findings

The results show that the simultaneous placement of micro-texture on the rake face and flank face of the tool has a positive effect on improving the milling behavior and surface quality of the tool. Taking milling force, tool wear and surface roughness as the evaluation criteria, the optimal parameter combination is obtained: the rake face micro-texture diameter is 50 µm, the distance from the micro-texture is 200 µm and the distance from the cutting edge is 110 µm; the diameter of the micro-textured flank is 40 µm, the distance from the micro-texture is 170 µm and the distance from the cutting edge is 130 µm.

Originality/value

Taking milling force, tool wear and surface roughness as the evaluation criteria, the optimal parameter combination is obtained: the rake face micro-texture diameter is 50 µm, the distance from the micro-texture is 200 µm and the distance from the cutting edge is 110 µm; the diameter of the micro-textured flank is 40 µm, the distance from the micro-texture is 170 µm and the distance from the cutting edge is 130 µm, which provides theoretical support for the further study of the micro-textured tool.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0022/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 January 2024

Shucai Yang, Dawei Wang and Zhanjun Xiao

The purpose is to explore the improvement mechanism of coating and laser micro-texture on the surface properties of cemented carbide, so as to give full play to the technical…

Abstract

Purpose

The purpose is to explore the improvement mechanism of coating and laser micro-texture on the surface properties of cemented carbide, so as to give full play to the technical advantages of both and improve the overall surface properties of the material.

Design/methodology/approach

The surface hardness of the coating was measured by a microhardness tester, the surface element composition of the coating was tested by an energy spectrum analyzer and the phase was measured by an X-ray diffractometer to observe the surface morphology after the friction and wear experiment.

Findings

Laser will generate new oxide and nitride films on the surface of the coating, which will improve the hardness of the coating surface and the bonding strength between the coating and the substrate. The surface micro-texture can collect wear debris during the friction process, reduce abrasive wear and play a good role in inhibiting the expansion of the coating failure zone.

Originality/value

Most of the research on traditional laser coating is to process micro-texture first and then coating. This study is the opposite. In this paper, the modification effect of laser on the coating surface is explored, and the parameters of laser and coating are optimized, which paves the way for the subsequent milling experiments of textured coating tools.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2