Search results

1 – 10 of over 8000
Article
Publication date: 7 June 2011

Tarek Helmy and Zeehasham Rasheed

Grid computing is gaining more significance in the high‐performance computing world. This concept leads to the discovery of solutions for complicated problems regarding the…

Abstract

Purpose

Grid computing is gaining more significance in the high‐performance computing world. This concept leads to the discovery of solutions for complicated problems regarding the diversity of available resources among different jobs in the grid. However, the major problem is the optimal job scheduling for heterogeneous resources, in which each job needs to be allocated to a proper grid's node with the appropriate resources. An important challenge is to solve optimally the scheduling problem, because the capability and availability of resources vary dynamically and the complexity of scheduling increases with the size of the grid. The purpose of this paper is to present a framework which combines the fuzzy C‐mean (FCM) clustering with an ant colony optimization (ACO) algorithm to improve the scheduling decision when the grid is heterogeneous.

Design/methodology/approach

In the proposed model, the FCM algorithm classifies the jobs into appropriate classes, and the ACO algorithm maps the jobs to the appropriate resources. The ACO is characterized by ant‐like mobile agents that cooperate and stochastically explore a network, iteratively building solutions based on their own memory and on the traces (pheromone levels) left by other agents.

Findings

The simulation is done by using historical information on jobs in a grid. The experimental results show that the proposed algorithm can allocate jobs more efficiently and more effectively than the traditional algorithms for scheduling policies.

Originality/value

The paper provides a scheduling model based on FCM clustering and ACO algorithm for grid scheduling. The authors compared the performance of the proposed algorithm with the performance of various job‐scheduling algorithms in the grid computing environment. The comparison results show that the proposed algorithm outperforms other algorithms and gives optimal results.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 4 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 August 2020

Ambika Aggarwal, Priti Dimri, Amit Agarwal and Ashutosh Bhatt

In general, cloud computing is a model of on-demand business computing that grants a convenient access to shared configurable resources on the internet. With the increment of…

Abstract

Purpose

In general, cloud computing is a model of on-demand business computing that grants a convenient access to shared configurable resources on the internet. With the increment of workload and difficulty of tasks that are submitted by cloud consumers; “how to complete these tasks effectively and rapidly with limited cloud resources?” is becoming a challenging question. The major point of a task scheduling approach is to identify a trade-off among user needs and resource utilization. However, tasks that are submitted by varied users might have diverse needs of computing time, memory space, data traffic, response time, etc. This paper aims to proposes a new way of task scheduling.

Design/methodology/approach

To make the workflow completion in an efficient way and to reduce the cost and flow time, this paper proposes a new way of task scheduling. Here, a self-adaptive fruit fly optimization algorithm (SA-FFOA) is used for scheduling the workflow. The proposed multiple workflow scheduling model compares its efficiency over conventional methods in terms of analysis such as performance analysis, convergence analysis and statistical analysis. From the outcome of the analysis, the betterment of the proposed approach is proven with effective workflow scheduling.

Findings

The proposed algorithm is more superior regarding flow time with the minimum value, and the proposed model is enhanced over FFOA by 0.23%, differential evolution by 2.48%, artificial bee colony (ABC) by 2.85%, particle swarm optimization (PSO) by 2.46%, genetic algorithm (GA) by 2.33% and expected time to compute (ETC) by 2.56%. While analyzing the make span case, the proposed algorithm is 0.28%, 0.15%, 0.38%, 0.20%, 0.21% and 0.29% better than the conventional methods such as FFOA, DE, ABC, PSO, GA and ETC, respectively. Moreover, the proposed model has attained less cost, which is 2.14% better than FFOA, 2.32% better than DE, 3.53% better than ABC, 2.43% better than PSO, 2.07% better than GA and 2.90% better than ETC, respectively.

Originality/value

This paper presents a new way of task scheduling for making the workflow completion in an efficient way and for reducing the cost and flow time. This is the first paper uses SA-FFOA for scheduling the workflow.

Details

Kybernetes, vol. 50 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 July 2023

Binghai Zhou and Mingda Wen

In a kitting supply system, the occurrence of material-handling errors is unavoidable and will cause serious production losses to an assembly line. To minimize production losses…

Abstract

Purpose

In a kitting supply system, the occurrence of material-handling errors is unavoidable and will cause serious production losses to an assembly line. To minimize production losses, this paper aims to present a dynamic scheduling problem of automotive assembly line considering material-handling mistakes by integrating abnormal disturbance into the material distribution problem of mixed-model assembly lines (MMALs).

Design/methodology/approach

A multi-phase dynamic scheduling (MPDS) algorithm is proposed based on the characteristics and properties of the dynamic scheduling problem. In the first phase, the static material distribution scheduling problem is decomposed into three optimization sub-problems, and the dynamic programming algorithm is used to jointly optimize the sub-problems to obtain the optimal initial scheduling plan. In the second phase, a two-stage rescheduling algorithm incorporating removing rules and adding rules was designed according to the status update mechanism of material demand and multi-load AGVs.

Findings

Through comparative experiments with the periodic distribution strategy (PD) and the direct insertion method (DI), the superiority of the proposed dynamic scheduling strategy and algorithm is verified.

Originality/value

To the best of the authors’ knowledge, this study is the first to consider the impact of material-handling errors on the material distribution scheduling problem when using a kitting strategy. By designing an MPDS algorithm, this paper aims to maximize the absorption of the disturbance caused by material-handling errors and reduce the production losses of the assembly line as well as the total cost of the material transportation.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 January 2020

Yi Zhang, Haihua Zhu and Dunbing Tang

With the continuous upgrading of the production mode of the manufacturing system, the characteristics of multi-variety, small batch and mixed fluidization are presented, and the…

Abstract

Purpose

With the continuous upgrading of the production mode of the manufacturing system, the characteristics of multi-variety, small batch and mixed fluidization are presented, and the production environment becomes more and more complex. To improve the efficiency of solving multi-objective flexible job shop scheduling problem (FJSP), an improved hybrid particle swarm optimization algorithm (IH-PSO) is proposed.

Design/methodology/approach

After reviewing literatures on FJSP, an IH-PSO algorithm for solving FJSP is developed. First, IH-PSO algorithm draws on the crossover and mutation operations of genetic algorithm (GA) algorithm and proposes a new method for updating particles, which makes the offspring particles inherit the superior characteristics of the parent particles. Second, based on the improved simulated annealing (SA) algorithm, the method of updating the individual best particles expands the search scope of the domain and solves the problem of being easily trapped in local optimum. Finally, analytic hierarchy process (AHP) is used in this paper to solve the optimal solution satisfying multi-objective optimization.

Findings

Through the benchmark experiment and the production example experiment, it is verified that the proposed algorithm has the advantages of high quality of solution and fast speed of convergence.

Research limitations/implications

This method does not consider the unforeseen events that occur during the process of scheduling and cause the disruption of normal production scheduling activities, such as machine breakdown.

Practical implications

IH-PSO algorithm combines PSO algorithm with GA and SA algorithms. This algorithm retains the advantage of fast convergence speed of traditional PSO algorithm and has the characteristic of inheriting excellent genes. In addition, the improved SA algorithm is used to solve the problem of falling into local optimum.

Social implications

This research provides an efficient scheduling method for solving the FJSP problem.

Originality/value

This research proposes an IH-PSO algorithm to solve the FJSP more efficiently and meet the needs of multi-objective optimization.

Details

Kybernetes, vol. 49 no. 12
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 February 2023

Lin-Lin Xie, Yajiao Chen, Sisi Wu, Rui-Dong Chang and Yilong Han

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to…

Abstract

Purpose

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to focus on finding suitable algorithms to solve various scheduling problems and fail to find the potential scheduling rules in these optimal or near-optimal solutions, that is, the possible intrinsic relationships between attributes related to the scheduling of activity sequences. Data mining (DM) is used to analyze and interpret data to obtain valuable information stored in large-scale data. The goal of this paper is to use DM to discover scheduling concepts and obtain a set of rules that approximate effective solutions to resource-constrained project scheduling problems. These rules do not require any search and simulation, which have extremely low time complexity and support real-time decision-making to improve planning/scheduling.

Design/methodology/approach

The resource-constrained project scheduling problem can be described as scheduling a group of interrelated activities to optimize the project completion time and other objectives while satisfying the activity priority relationship and resource constraints. This paper proposes a new approach to solve the resource-constrained project scheduling problem by combining DM technology and the genetic algorithm (GA). More specifically, the GA is used to generate various optimal project scheduling schemes, after that C4.5 decision tree (DT) is adopted to obtain valuable knowledge from these schemes for further predicting and solving new scheduling problems.

Findings

In this study, the authors use GA and DM technology to analyze and extract knowledge from a large number of scheduling schemes, and determine the scheduling rule set to minimize the completion time. In order to verify the application effect of the proposed DT classification model, the J30, J60 and J120 datasets in PSPLIB are used to test the validity of the scheduling rules. The results show that DT can readily duplicate the excellent performance of GA for scheduling problems of different scales. In addition, the DT prediction model developed in this study is applied to a high-rise residential project consisting of 117 activities. The results show that compared with the completion time obtained by GA, the DT model can realize rapid adjustment of project scheduling problem to deal with the dynamic environment interference. In a word, the data-based approach is feasible, practical and effective. It not only captures the knowledge contained in the known optimal scheduling schemes, but also helps to provide a flexible scheduling decision-making approach for project implementation.

Originality/value

This paper proposes a novel knowledge-based project scheduling approach. In previous studies, intelligent optimization algorithm is often used to solve the project scheduling problem. However, although these intelligent optimization algorithms can generate a set of effective solutions for problem instances, they are unable to explain the process of decision-making, nor can they identify the characteristics of good scheduling decisions generated by the optimization process. Moreover, their calculation is slow and complex, which is not suitable for planning and scheduling complex projects. In this study, the set of effective solutions of problem instances is taken as the training dataset of DM algorithm, and the extracted scheduling rules can provide the prediction and solution of new scheduling problems. The proposed method focuses on identifying the key parameters of a specific dynamic scheduling environment, which can not only reproduces the scheduling performance of the original algorithm well, but also has the ability to make decisions quickly under the dynamic interference construction scenario. It is helpful for project managers to implement quick decisions in response to construction emergencies, which is of great practical significance for improving the flexibility and efficiency of construction projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 November 2009

Yaojun Han, Changjun Jiang and Xuemei Luo

The purpose of this paper is to present a scheduling model, scheduling algorithms, and formal model and analysis techniques for concurrency transaction in grid database…

Abstract

Purpose

The purpose of this paper is to present a scheduling model, scheduling algorithms, and formal model and analysis techniques for concurrency transaction in grid database environment.

Design/methodology/approach

Classical transaction models and scheduling algorithms developed for homogeneous distributed architecture will not work in the grid architecture and should be revisited for this new and evolving architecture. The conventional model is improved by three‐level transaction scheduling model and the scheduling algorithms for concurrency transaction is improved by considering transmission time of a transaction, user's priority, and the number of database sites accessed by the transaction as a priority of the transaction. Aiming at the problems of analysis and modeling of the transaction scheduling in grid database, colored dynamic time Petri nets (CDTPN) model are proposed. Then the reachability of the transaction scheduling model is analyzed.

Findings

The three‐level transaction scheduling model not only supports the autonomy of grid but also lightens the pressure of communication. Compared with classical transaction scheduling algorithms, the algorithms not only support the correctness of the data but also improve the effectiveness of the system. The CDTPN model is convenient for modeling and analyzing dynamic performance of grid transaction. Some important results such as abort‐ratio and turnover‐time are gotten by analyzing reachability of CDTPN.

Originality/value

The three‐level transaction scheduling model and improved scheduling algorithms with more complex priority are presented in the paper. The paper gives a CDTPN model for modeling transaction scheduling in grid database. In CDTPN model, the time interval of a transition is a function of tokens in input places of the transition.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 March 2009

Gary G. Yen and Brian Ivers

The purpose of this paper is to develop an effective and efficient approach to exploit meta‐heuristic in particle swarm optimization (PSO) for the job shop scheduling problem…

1471

Abstract

Purpose

The purpose of this paper is to develop an effective and efficient approach to exploit meta‐heuristic in particle swarm optimization (PSO) for the job shop scheduling problem (JSP), a class of NP‐hard optimization problems. The approach is to be built on a PSO with multiple independent swarms. PSO was inspired by bird flocking and animal social behaviors. The particles operate collectively like a swarm that flies through the hyperdimensional space to search for possible optimal solutions. The behavior of the particles is influenced by their tendency to learn from their personal past experience and from the success of their peers to adjust their flying speed and direction. Research in fusing the multiple‐swarm concept into PSO is well‐established in solving single objective optimization problems and multimodal problems.

Design/methodology/approach

This study examines the optimization of the JSP via a search space division scheme and use of the meta‐heuristic method of PSO by assigning each machine in a JSP an independent swarm of particles. The use of multiple swarms in PSO is motivated by the idea of “divide and conquer” to reduce the computational complexity incurred through solving a NP‐hard combinatorial optimization problem. The resulted design, JSP/PSO algorithm, fully exploits the computing power presented by the multiple‐swarm PSO.

Findings

Simulation experiments show that the proposed JSP/PSO algorithm can effectively solve the JSP problems from small to median size. If certain mechanism of information sharing between swarms can be incorporated, it is believed that the new design could offer even more computing power to tackle the large‐sized problems.

Originality/value

The proposed JSP/PSO algorithm is effective in solving JSPs. The proposed algorithm shows considerable promise when searching the space of non‐delay schedules. It demands relatively lower number of function evaluations compared to other state‐of‐the‐art. The drawback to the JSP/PSO is that the GT scheduling adopted is too computationally expensive. Future works will address this concern.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 March 1980

John R. King and Alexander S. Spachis

Scheduling is defined by Baker as, “the allocation of resources over time to perform a collection of tasks”. The term facilities is often used instead of resources and the tasks…

Abstract

Scheduling is defined by Baker as, “the allocation of resources over time to perform a collection of tasks”. The term facilities is often used instead of resources and the tasks to be performed may involve a variety of different operations.

Details

International Journal of Physical Distribution & Materials Management, vol. 10 no. 3
Type: Research Article
ISSN: 0269-8218

Article
Publication date: 31 December 2006

Hye Hwan Ahn, Hee Yang Youn, Eung Je Lee and Chang Won Park

Bluetooth wireless technology is a low power, low cost and short‐range RF technology that permits communication between bluetooth enabled devices, and focuses on replacement of…

Abstract

Bluetooth wireless technology is a low power, low cost and short‐range RF technology that permits communication between bluetooth enabled devices, and focuses on replacement of cables between electronic devices. Communication between Bluetooth devices follows a strict master‐slave scheme. Each master device can have up to 7 active slaves and forms a so called piconet. In Bluetooth employing conventional scheduling policies such as Round Robin (RR), POLL or NULL packet is sent when the Master or Slave node does not have any data to send which causes a significant waste of resources. The DRR (Deficit Round Robin) scheduling algorithm can avoid the waste of time and slot of the RR scheduling at the sacrifice of fairness. In this paper we propose an improved DRR (IDRR) scheduling algorithm which effectively combines the DRR and bin packing algorithm. Computer simulation reveals that slot utilization is increased up to about 60% while the total number of used slots is decreased up to about 100%. The proposed IDRR scheduling is thus effective for not only basic data transmission but also real‐time multimedia data transmission.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 31 January 2020

Guan-hong Zhang, Odbal and Karlo Abnoosian

Today, with the rapid growth of cloud computing (CC), there exist several users that require to execute their tasks by the available resources to obtain the best performance…

Abstract

Purpose

Today, with the rapid growth of cloud computing (CC), there exist several users that require to execute their tasks by the available resources to obtain the best performance, reduce response time and use resources. However, despite the significance of the scheduling issue in CC, as far as the authors know, there is not any systematic and inclusive paper about studying and analyzing the recent methods. This paper aims to review the current mechanisms and techniques, which can be addressed in this area.

Design/methodology/approach

The central purpose of this paper refers to offering a complete study of the state-of-the-art planning algorithms in the cloud and also instructions for future research. Besides, this paper offers a methodological analysis of the scheduling mechanisms in the cloud environment.

Findings

The central role of this paper is to present a summary of the present issues related to scheduling in the cloud environment, providing a structure of some popular techniques in cloud scheduling scope and defining key areas for the development of cloud scheduling techniques in the future research.

Research limitations/implications

In this paper, scheduling mechanisms are classified into two main categories include deterministic and non-deterministic algorithms; however, it can also be classified into different categories. In addition, the selection of all related papers could not be ensured. It is possible that some appropriate and related papers were removed in the search process.

Practical implications

According to the results of this paper, the requirement for more suitable algorithms exists to allocate tasks for resources in cloud environments. In addition, some principal rules in cloud scheduling should be re-evaluated to achieve maximum productivity and minimize wasted expense and effort. In this direction, to stay away from overloading and under loading of components and resources, the proposed method should execute workloads in an adaptable and scalable way. As the number of users increased in cloud environments, the number of tasks in the cloud that needed to be scheduled proportionally increased. Thus, an efficient mechanism is needed for scheduling tasks in these environments.

Originality/value

The general information gathered in this study makes the researchers acquainted with the state-of-the-art scheduling area of the cloud. Entirely, the answers to the research questions summarized the main objective of scheduling, current challenges, mechanisms and methods in the cloud systems. The authors hope that the results of this paper lead researchers to present more efficient scheduling techniques in cloud systems.

Details

Kybernetes, vol. 49 no. 12
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 8000