Search results

1 – 2 of 2
Article
Publication date: 22 May 2024

Mohsin Iqbal, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Muhammad Iqbal and Adnan Rasul

Composite materials are effective alternatives for rehabilitating critical members of offshore platforms, bridges, and other structures. The structural response of composite…

Abstract

Purpose

Composite materials are effective alternatives for rehabilitating critical members of offshore platforms, bridges, and other structures. The structural response of composite reinforcement greatly depends on the orientation of fibres in the composite material. Joints are the most critical part of tubular structures. Various existing studies have identified optimal reinforcement orientations for a single load component, but none has addressed the combined load case, even though most practical loads are multiplanar.

Design/methodology/approach

This study investigates the optimal orientation of composite reinforcement for reducing stress concentration factors (SCF) of tubular KT-joints. The joint reinforcement was modelled and simulated using ANSYS. A parametric study was carried out to determine the effect of the orientations of reinforcement in the interface region on SCF at every 15° offset along the weld toe using linear extrapolation of principal stresses. The impact of orientation for uniplanar and multiplanar loads was investigated, and a general result about optimum orientation was inferred.

Findings

It was found that the maximum decrease of SCF is achieved by orienting the fibres of composite reinforcement along the maximum SCF. Notably, the optimal direction for any load configuration was consistently orthogonal to the weld toe of the chord-brace interface. As such, unidirectional composites wrapped around the brace axis, covering both sides of the brace-chord interface, are most effective for SCF reduction.

Originality/value

The findings of this study are crucial for adequate reinforcement of tubular joints using composites, offering a broader and universally applicable optimum orientation that transcends specific joint and load configuration.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 May 2024

Adnan Rasul, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis and Mohsin Iqbal

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental…

Abstract

Purpose

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental testing and finite element analysis (FEA) are utilized to estimate the SCF efficiently. The mathematical equations provide the SCF at the crown and saddle of tubular T-joints for various load scenarios. Offshore structures are subjected to a wide range of stresses from all directions, and the hotspot stress might occur anywhere along the brace. It is critical to incorporate stress distribution since using the single-point SCF equation can lead to inaccurate hotspot stress and fatigue life estimates. As far as we know, there are no equations available to determine the SCF around the axis of the brace.

Design/methodology/approach

A mathematical model based on the training weights and biases of artificial neural networks (ANNs) is presented to predict SCF. 625 FEA simulations were conducted to obtain SCF data to train the ANN.

Findings

Using real data, this ANN was used to create mathematical formulas for determining the SCF. The equations can calculate the SCF with a percentage error of less than 6%.

Practical implications

Engineers in practice can use the equations to compute the hotspot stress precisely and rapidly, thereby minimizing risks linked to fatigue failure of offshore structures and assuring their longevity and reliability. Our research contributes to enhancing the safety and reliability of offshore structures by facilitating more precise assessments of stress distribution.

Originality/value

Precisely determining the SCF for the fatigue life of offshore structures reduces the potential hazards associated with fatigue failure, thereby guaranteeing their longevity and reliability. The present study offers a systematic approach for using FEA and ANN to calculate the stress distribution along the weld toe and the SCF in T-joints since ANNs are better at approximating complex phenomena than standard data fitting techniques. Once a database of parametric equations is available, it can be used to rapidly approximate the SCF, unlike experimentation, which is costly and FEA, which is time consuming.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 2 of 2