Search results

1 – 10 of 13
Article
Publication date: 4 December 2018

Navid Moghaddaszadeh, Saman Rashidi and Javad Abolfazli Esfahani

This paper aims to use the second law of thermodynamic to evaluate the potential of gear-ring turbulator in a three-dimensional heat exchanger tube. Accordingly, a numerical…

Abstract

Purpose

This paper aims to use the second law of thermodynamic to evaluate the potential of gear-ring turbulator in a three-dimensional heat exchanger tube. Accordingly, a numerical simulation is performed to obtain the irreversibilities in a three-dimensional heat exchanger tube equipped with some gear-ring turbulators for turbulence regime.

Design/methodology/approach

A numerical simulation is performed to obtain the irreversibilities in a three-dimensional heat exchanger tube equipped with some gear-ring turbulators for turbulence regime. The analysis is carried out based on shear stress transport (SST) k-ω turbulent model. The influences of different parameters containing tooth number, free-space length ratios and Reynolds number on frictional and thermal irreversibilities and Bejan number are discussed.

Findings

The results indicated that the thermal irreversibility reduces by decreasing the tooth number. For example, the thermal entropy generation decreases about 25.81 per cent by decreasing the tooth number in the range of 24 to 0 at Re = 6,000. Moreover, the frictional entropy generation decreases by increasing the tooth number as the gear with more tooth number causes a lower flow disturbance.

Originality/value

The present study arranged a numerical work to study the potential of a gear-ring turbulator in a heat exchanger tube from first and second laws of thermodynamic viewpoint. The turbulent flow is considered for this problem. The literature review showed that the usage of a gear-ring turbulator in a heat exchanger tube is not investigated from the second law of thermodynamic viewpoint by previous studies. As a result, the influences of different parameters containing tooth number, free-space length ratios and Reynolds number on frictional and thermal irreversibilities and Bejan number are discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 May 2021

Maziar Dehghan, Zahra Azari Nesaz, Abolfazl Pourrajabian and Saman Rashidi

Aiming at finding the velocity distribution profile and other flow characteristic parameters such as the Poiseuille (Po) number, this study aims to focus on the three-dimensional…

Abstract

Purpose

Aiming at finding the velocity distribution profile and other flow characteristic parameters such as the Poiseuille (Po) number, this study aims to focus on the three-dimensional forced convective flow inside rectangular ducts filled with porous media commonly used in air-based solar thermal collectors to enhance the thermal performance. The most general model for the fluid flow (i.e. the non-linear Darcy–Brinkman–Forchheimer partial differential equation subjected to slip and no-slip boundary conditions) is considered.

Design/methodology/approach

The general governing equations are solved analytically based on the perturbation technique and the results are validated against numerical simulation study based on a finite-difference solution over a non-uniform but structured grid.

Findings

The analytical velocity distribution profile based on exponential functions for the above-mentioned general case is obtained, and accordingly, expressions for the Po are introduced. It is found that the velocity distribution tends to be uniform by increasing the aspect ratio of the duct. Moreover, a criterion for considering/neglecting the nonlinear drag term in the momentum equation (i.e. the Forchheimer term) is proposed. According to the sensitivity analysis, results show that the nonlinear drag term effects on the Nusselt number are important only in porous media with high Darcy numbers.

Originality/value

A general analytic solution for three-dimensional forced convection flows through rectangular ducts filled with porous media for the general model of Darcy–Brinkman–Forchheimer and the general boundary condition including both no-slip and slip-flow regimes is obtained. An analytic expression to calculate Po number is obtained which can be practical for engineering estimations and a basis for validation of numerical simulations. A criterion for considering/neglecting the nonlinear drag term in the momentum equation is also introduced.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 June 2016

Saman Rashidi, Javad Abolfazli Esfahani, Mohammad Sadegh Valipour, Masoud Bovand and Ioan Pop

The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor…

Abstract

Purpose

The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor safety analysis, combustion, compact heat exchangers, solar power collectors, high-performance insulation for buildings and many another applications. The purpose of this paper is to perform a numerical study on flows passing through two circular cylinders in side-by-side arrangement wrapped with a porous layer under the influence of a magnetic field. The authors focus the attention to the effects of magnetic field, Darcy number and pitch ratio on the mechanism of convection heat transfer and flow structures.

Design/methodology/approach

The Darcy-Brinkman-Forchheimer model for simulating the flow in porous medium along with the Maxwell equations for providing the coupling between the flow field and the magnetic field have been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Stuart and Darcy numbers are varied within the range of 0 < N < 3 and 1e-6 < Da < 1e-2, respectively, and Reynolds and Prandtl numbers are equal to Re=100 and Pr=0.71, respectively.

Findings

The results show that the drag coefficient decreases for N < 0.6 and increases for N > 0.6. Also, the effect of magnetic field is negligible in the gap between two cylinders because the magnetic field for two cylinders counteracts each other in these regions.

Originality/value

To the authors knowledge, in the open literature, flow passing over two circular cylinders in side-by-side arrangement wrapped with a porous layer has been rarely investigated especially under the influence of a magnetic field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 September 2015

Masoud Bovand, Saman Rashidi, Masoomeh Dehesht and Javad Abolfazli Esfahani

The purpose of this paper is to implement the numerical analysis based on finite volume method to compare the effects of stress-jump (SJ) and stress-continuity (SC) conditions on…

Abstract

Purpose

The purpose of this paper is to implement the numerical analysis based on finite volume method to compare the effects of stress-jump (SJ) and stress-continuity (SC) conditions on flow structure around and through a porous circular cylinder.

Design/methodology/approach

In this study, a steady flow of a viscous, incompressible fluid around and through a porous circular cylinder of diameter “D,” using Darcy-Brinkman-Forchheimer’s equation in the porous region, is discussed. The SJ condition proposed by Ochoa-Tapia and Whitaker is applied at the porous-fluid interface and compared with the traditional interfacial condition based on the SC condition in fluid and porous media. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Reynolds and Darcy numbers are varied within the ranges of 1 < Re < 40 and 10-7 < Da < 10-2, respectively, and the porosities are e=0.45, 0.7 and 0.95.

Findings

Results show that the SJ condition leads to a much smaller boundary layer within porous medium near the interface as compared to the SC condition. Two interfacial conditions yield similar results with decrease in porosity.

Originality/value

There is no published research in the literature about the effects of important parameters, such as Porosity and Darcy numbers on different fluid-porous interface conditions for a porous cylinder and comparison the effects of SJ and SC conditions on flow structure around and through a porous circular cylinder.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2015

M. Nawaz, A Zeeshan, R Ellahi, S Abbasbandy and Saman Rashidi

The purpose of this paper is to study the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of genetic…

Abstract

Purpose

The purpose of this paper is to study the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of genetic algorithm (GA). The main emphasis is to find the analytical and numerical solutions for the said mathematical model. The work undertaken is a blend of numerical and analytical studies. Effects of active parameters such as: Hartmann number, Prandtl number, Eckert number, Nusselt number, Skin friction and dimensionless fluids parameters on the flow and heat transfer characteristics have been examined by graphs and tables. Compression is also made with the existing benchmark results.

Design/methodology/approach

Analytical solutions of non-linear coupled equations are developed by optimal homotopy analysis method (OHAM). A very effective and higher order numerical scheme hybrid GA and Nelder-Mead optimization Algorithms are used for numerical investigations.

Findings

An excellent agreement with the existing results in limiting sense is noted. It is observed that the radial velocity is an increasing function of dimensionless material parameters α 1, α 2 and β. Temperature increases by increasing the values of M, Pr, Ec and γ. Non-Newtonian parameter β has similar effects on skin friction coefficient and Nusselt number. The wall heat transfer rate is a decreasing function of A and ß whereas it increases by increasing conjugate parameter γ.

Originality/value

The problem under consideration has been widely studied by many investigators due to its importance and engineering applications. But most of the studies as the authors have documented are for Newtonian or viscous fluids. But no such analysis is available in the literature which can describe the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of GA.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2014

Saman Rashidi, Reza Masoodi, Masoud Bovand and Mohammad Sadegh Valipour

– The purpose of this paper is to study steady, laminar, and two-dimensional flow around and through a porous diamond cylinder.

Abstract

Purpose

The purpose of this paper is to study steady, laminar, and two-dimensional flow around and through a porous diamond cylinder.

Design/methodology/approach

The governing equations are written for two zones: the clear fluid zone and the porous zone. For the porous zone, the modified Navier-Stokes equations, including Darcy, Brinkman, and Forcheimer terms are used. The governing equations are solved numerically using a finite volume approach.

Findings

It was found that as the apex angle and Reynolds number decreases the wake length decreases and the separation is delayed.

Originality/value

There is no published research in the literature about flow around and into porous diamond cylinders to study the effect of important parameters, such as apex angle, Darcy number, and Reynolds number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 2019

Ali Mostafaeipour, Hossein Goudarzi, Ahmad Sedaghat, Mehdi Jahangiri, Hengameh Hadian, Mostafa Rezaei, Amir-Mohammad Golmohammadi and Parniyan Karimi

In hot and dry climates, air conditioning accounts for a large portion of total energy consumption; therefore, this paper aims to investigate the impact of sol-air temperature and…

Abstract

Purpose

In hot and dry climates, air conditioning accounts for a large portion of total energy consumption; therefore, this paper aims to investigate the impact of sol-air temperature and ground temperature on the loss of cooling energy in hot and dry regions of Iran.

Design/methodology/approach

In line with this objective, the values of sol-air temperature along different directions and ground temperature at different depths were assessed with respect to climatic data of Yazd City. The impact of sol-air temperature and ground temperature on the rate of heat loss was investigated. So, energy loss of the walls aligned to four primary directions was calculated. This process was repeated for a 36 m2 building with three different shape factors. All analyses were conducted for the period from May to September, during which buildings need to be cooled by air conditioners.

Findings

Numerical analyses conducted for hot and dry climate show that sol-air temperature leads to a 41-17 per cent increase in the wall’s energy loss compared with ambient temperature. Meanwhile, building the wall below the surface leads to a significant reduction in energy loss. For example, building the wall 400 cm below the surface leads to about 74.8-79.2 per cent energy saving compared with above ground design. The results also show that increasing the direct contact between soil and building envelope decreases the energy loss, so energy loss of a building that is built 400 cm below the surface is 53.7-55.3 per cent lower than that of a building built above the surface.

Originality/value

The impact of sol-air temperature and ground temperature on the cooling energy loss of a building in hot and dry climate was investigated. Numerical analysis shows that solar radiation increases heat loss from building envelope. Soil temperature fluctuations decrease with depth. Heat loss from building envelope in an underground building is lower than that from building envelope in a building built above the ground. Three different shape factors showed that sol-air temperature has the maximum impact on square-shaped plan and minimal impact on buildings with east-west orientation.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 February 2022

Arezoo Gazori-Nishabori, Kaveh Khalili-Damghani and Ashkan Hafezalkotob

A Nash bargaining game data envelopment analysis (NBG-DEA) model is proposed to measure the efficiency of dynamic multi-period network structures. This paper aims to propose…

Abstract

Purpose

A Nash bargaining game data envelopment analysis (NBG-DEA) model is proposed to measure the efficiency of dynamic multi-period network structures. This paper aims to propose NBG-DEA model to measure the performance of decision-making units with complicated network structures.

Design/methodology/approach

As the proposed NBG-DEA model is a non-linear mathematical programming, finding its global optimum solution is hard. Therefore, meta-heuristic algorithms are used to solve non-linear optimization problems. Fortunately, the NBG-DEA model optimizes the well-formed problem, so that it can be solved by different non-linear methods including meta-heuristic algorithms. Hence, a meta-heuristic algorithm, called particle swarm optimization (PSO) is proposed to solve the NBG-DEA model in this paper. The case study is Industrial Management Institute (IMI), which is a leading organization in providing consulting management, publication and educational services in Iran. The sub-processes of IMI are considered as players where their pay-off is defined as the efficiency of sub-processes. The network structure of IMI is studied during multiple periods.

Findings

The proposed NBG-DEA model is applied to measure the efficiency scores in the IMI case study. The solution found by the PSO algorithm, which is implemented in MATLAB software, is compared with that generated by a classic non-linear method called gradient descent implemented in LINGO software.

Originality/value

The experiments proved that suitable and feasible solutions could be found by solving the NBG-DEA model and shows that PSO algorithm solves this model in reasonable central process unit time.

Details

Journal of Modelling in Management, vol. 18 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 16 February 2022

Ru Liang, Rui Li, Xue Yan, Zhenzhen Xue and Xin Wei

Prefabricated components sustainable supplier (PCSS) selection is critical to the success of prefabricated projects. However, limited studies have addressed the uncertainty and…

Abstract

Purpose

Prefabricated components sustainable supplier (PCSS) selection is critical to the success of prefabricated projects. However, limited studies have addressed the uncertainty and complexities during the selection process, particularly in multi-criterion group decision-making (MCGDM) circumstances. Hence, the research aims to develop a group decision-making model using a modified fuzzy MCGDM approach for PCSS selection under uncertain situation.

Design/methodology/approach

The proposed study develops a framework for sorting decisions in PCSS selection by using the hesitant fuzzy technique for order preference by similarity to ideal solution (HF-TOPSIS) method. The maximum consistency (MC) model is used to calculate the weights of decision makers (DMs) based on the cardinality and sequence of decision data.

Findings

The proposed framework has been successfully applied and illustrated in the case example of CB01 contract section in Hong Kong-Zhuhai-Macao Bridge (HZMB) megaproject. The results show various complicated decision-making scenarios can be addressed through the proposed approach. The MC model is able to calculate the weights of DMs based on the cardinality and sequence of decision data.

Originality/value

The research contributes to improving accuracy and reliability decision-making processes for PCSS selection, especially under hesitant and fuzzy situations in prefabricated megaprojects.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 15 March 2024

Lin Sun, Chunxia Yu, Jing Li, Qi Yuan and Shaoqiong Zhao

The paper aims to propose an innovative two-stage decision model to address the sustainable-resilient supplier selection and order allocation (SSOA) problem in the single-valued…

Abstract

Purpose

The paper aims to propose an innovative two-stage decision model to address the sustainable-resilient supplier selection and order allocation (SSOA) problem in the single-valued neutrosophic (SVN) environment.

Design/methodology/approach

First, the sustainable and resilient performances of suppliers are evaluated by the proposed integrated SVN-base-criterion method (BCM)-an acronym in Portuguese of interactive and multi-criteria decision-making (TODIM) method, with consideration of the uncertainty in the decision-making process. Then, a novel multi-objective optimization model is formulated, and the best sustainable-resilient order allocation solution is found using the U-NSGA-III algorithm and TOPSIS method. Finally, based on a real-life case in the automotive manufacturing industry, experiments are conducted to demonstrate the application of the proposed two-stage decision model.

Findings

The paper provides an effective decision tool for the SSOA process in an uncertain environment. The proposed SVN-BCM-TODIM approach can effectively handle the uncertainties from the decision-maker’s confidence degree and incomplete decision information and evaluate suppliers’ performance in different dimensions while avoiding the compensatory effect between criteria. Moreover, the proposed order allocation model proposes an original way to improve sustainable-resilient procurement values.

Originality/value

The paper provides a supplier selection process that can effectively integrate sustainability and resilience evaluation in an uncertain environment and develops a sustainable-resilient procurement optimization model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 13