Search results

1 – 2 of 2
Article
Publication date: 1 January 2008

Ming‐Sze Tong, Tae‐Gyu Chang and Ronan Sauleau

To perform studies and comparisons on the electromagnetic band‐gap (EBG) structures, which are constructed by using a combination of inductive and capacitive elements printed on…

Abstract

Purpose

To perform studies and comparisons on the electromagnetic band‐gap (EBG) structures, which are constructed by using a combination of inductive and capacitive elements printed on guided‐wave transmission lines, and by applying a chirping‐and‐tapering technique.

Design/methodology/approach

An in‐house solver based on finite‐difference time‐domain (FDTD) method is adopted for analysis. Conventionally, EBG characteristics are formed by a series of perforations, considered as capacitive elements, on the ground plane(s). To enhance the performance, an additional inductive element is implemented, which is realized by narrowing the strip over the respective perforated regions. For further enhancement, a chirping‐and‐tapering technique is applied on the combined EBG structures for comparisons.

Findings

Through scattering parameter analysis, it was found that the EBG structures using combined inductive and capacitive elements exhibit a band‐gap behavior superior to the ones built with only inductive or capacitive elements. In another set of comparisons, the modified EBG structures combined with a chirping‐and‐tapering technique resulted in further widening of band‐gap, as well as lower side‐lobes and a smoother transition towards the band‐gap region.

Research limitations/implications

Research was mainly limited to studying solely the EBG structures printed on guided‐wave transmission lines.

Practical implications

The proposed EBG structures may be applied into various areas, such as microelectronics and mobile communications for harmonic suppressions, and into other practical electronic circuit structures.

Originality/value

The ideas on applying combined inductive and capacitive elements on various guided‐wave transmission lines to induce EBG characteristics, together with applications of a chirping‐and‐tapering technique on the combined EBG structures give rise to the research originality.

Details

Microelectronics International, vol. 25 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 2006

Ming‐Sze Tong, Yinchao Chen, Yilong Lu, Hyeong‐Seok Kim, Tae‐Gyu Chang and Ronan Sauleau

To study the photonic band‐gap (PBG) characteristics constructed by periodic conducting vias on various guided transmission‐line structures.

Abstract

Purpose

To study the photonic band‐gap (PBG) characteristics constructed by periodic conducting vias on various guided transmission‐line structures.

Design/methodology/approach

The finite difference time domain (FDTD) method is adopted to analyze various PBG via structures. Conventionally, PBG characteristics on guided‐wave structures, such as microstrip lines or coplanar waveguides (CPW), are constructed through a series of perforations on the ground plane(s). PBG characteristics can, however, also be realized through periodic arrangements of conducting vias located on the respective ground planes.

Findings

Through studies of the scattering parameters, it has been found that all analyzed PBG via structures exhibit strong band‐gap characteristics in a particular frequency range. Different harmonic patterns are also observed when the dimensional sizes of the conducting vias vary with respect to the PBG period.

Research limitations/implications

Research has been mainly limited to study solely the PBG via structures, guided‐wave transmission lines. More studies may be conducted in analyzing the overall performance when they are combined with other microwave components.

Practical implications

The proposed PBG via structures can be applied to various microwave areas, ranging from signal suppressions in microelectronics and mobile communications, to electro‐magnetic interference studies in other practical electronic circuit structures.

Originality/value

The ideas of applying conducting vias on the guided‐wave transmission lines and the proposed via patterns to induce the PBG characteristics are the research's claim to originality one.

Details

Microelectronics International, vol. 23 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 2 of 2