Search results

1 – 2 of 2
Open Access
Article
Publication date: 17 May 2024

Mahak Sharma, Rose Antony, Ashu Sharma and Tugrul Daim

Supply chains need to be made viable in this volatile and competitive market, which could be possible through digitalization. This study is an attempt to explore the role of…

Abstract

Purpose

Supply chains need to be made viable in this volatile and competitive market, which could be possible through digitalization. This study is an attempt to explore the role of Industry 4.0, smart supply chain, supply chain agility and supply chain resilience on sustainable business performance from the lens of natural resource-based view.

Design/methodology/approach

The study tests the proposed model using a covariance-based structural equation modelling and further investigates the ranking of each construct using the artificial neural networks approach in AMOS and SPSS respectively. A total of 234 respondents selected using purposive sampling aided in capturing the industry practices across supply chains in the UK. The full collinearity test was carried out to study the common method bias and the content validity was carried out using the item content validity index and scale content validity index. The convergent and discriminant validity of the constructs and mediation study was carried out in SPSS and AMOS V.23.

Findings

The results are overtly inferring the significant impact of Industry 4.0 practices on creating smart and ultimately sustainable supply chains. A partial relationship is established between Industry 4.0 and supply chain agility through a smart supply chain. This work empirically reinstates the combined significance of green practices, Industry 4.0, smart supply chain, supply chain agility and supply chain resilience on sustainable business value. The study also uses the ANN approach to determine the relative importance of each significant variable found in SEM analysis. ANN determines the ranking among the significant variables, i.e. supply chain resilience > green practices > Industry 4.0> smart supply chain > supply chain agility presented in descending order.

Originality/value

This study is a novel attempt to establish the role of digitalization in SCs for attaining sustainable business value, providing empirical support to the mediating role of supply chain agility, supply chain resilience and smart supply chain and manifests a significant integrated framework. This work reinforces the integrated model that combines all the constructs dealt with in silos so far in prior literature.

Open Access
Article
Publication date: 17 May 2024

Sina Moradi, Janne Hirvonen and Piia Sormunen

The energy performance gap (EPG) in building construction has been one of the major barriers to the realization of environmental and economic sustainability in the built…

Abstract

Purpose

The energy performance gap (EPG) in building construction has been one of the major barriers to the realization of environmental and economic sustainability in the built environment. Although there have been a few studies addressing this issue, studying this topic with a special focus on the project delivery process has been almost overlooked. Hence, this study aims to address the EPG in building construction through the lens of collaborative and life cycle-based project delivery.

Design/methodology/approach

In order to realize the objective of this study, the development of a theoretical framework based on the literature review was followed by a qualitative study in which 21 semi-structured interviews were conducted with Finnish project professionals representing clients, design/planning experts, constructors and building operation/maintenance experts to explore their views on the topic under study.

Findings

The findings reveal the project delivery-related causes of EPG in building construction. Moreover, the obtained results present a collaborative and life cycle-based delivery model that integrates project and product (i.e. building) life cycles, and it is compatible with all types of contractual frameworks in building construction projects.

Research limitations/implications

Although the findings of this study significantly contribute to theory and practice in the field of collaborative and sustainable construction project delivery, it is acknowledged that these findings are based on Finnish professionals’ input, and expanding this research to other regions is a potential area for further studies. Moreover, the developed model, although validated in Finland, needs to be tested in a broader context as well to gain wider generalizability.

Originality/value

The obtained results reveal the significance and impact of collaborative and life cycle-based project development and delivery on the realization of environmentally sustainable building construction.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Access

Only Open Access

Year

Last week (2)

Content type

Earlycite article (2)
1 – 2 of 2