Search results

1 – 5 of 5
Open Access
Article
Publication date: 6 May 2024

Danusa Silva da Costa, Lucely Nogueira dos Santos, Nelson Rosa Ferreira, Katiuchia Pereira Takeuchi and Alessandra Santos Lopes

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years…

Abstract

Purpose

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years using tools for reviewing the statement of preferred information item for systematic reviews without focusing on a randomized analysis and secondly to perform a bibliometric analysis on the properties of films and coatings added of tocopherol for food packaging.

Design/methodology/approach

On January 24, 2022, information was sought on the properties of films and coatings added of tocopherol for use as food packaging published in PubMed, Science Direct, Scopus and Web of Science databases. Further analysis was performed using bibliometric indicators with the VOSviewer tool.

Findings

The searches returned 33 studies concerning the properties of films and coatings added of tocopherol for food packaging, which were analyzed together for a better understanding of the results. Data analysis using the VOSviewer tool allowed a better visualization and exploration of these words and the development of maps that showed the main links between the publications.

Originality/value

In the area of food science and technology, the development of polymers capable of promoting the extension of the shelf life of food products is sought, so the knowledge of the properties is vital for this research area since combining a biodegradable polymeric material with a natural antioxidant active is of great interest for modern society since they associate environmental preservation with food preservation.

Details

British Food Journal, vol. 126 no. 13
Type: Research Article
ISSN: 0007-070X

Keywords

Book part
Publication date: 4 October 2024

Dominic Duncan Mensah, Jeleel Opeyemi Agboola, Liv Torunn Mydland and Margareth Øverland

It is estimated that the largest share of future food fish will come from aquaculture production and that sustainable aquaculture is a precondition to realising this potential…

Abstract

It is estimated that the largest share of future food fish will come from aquaculture production and that sustainable aquaculture is a precondition to realising this potential. Sustainable aquaculture will also play a key role in achieving several of the targets set out in SDG14. It is now established that most of the aquafeed ingredients used today are not sustainable and cannot support the projected growth of the sector, hence the need for sustainable alternatives. Sustainable aquaculture is multidimensional, therefore, this chapter focuses on sustainable feed ingredient sourcing. The authors explored a group of highly promising emerging novel ingredients known as microbial ingredients (MIs), means of producing them and how they can help achieve sustainable aquaculture and SDG14 targets. Specifically, the chapter narrows down on producing MIs from Norwegian spruce tree hydrolysates using a biotechnological approach and how Foods of Norway, a centre for research-based innovation at the Norwegian University of Life Sciences is leading efforts to produce feed-worthy MIs from industrial and agricultural by-products through biotechnology-based valorisation. MIs such as yeast, fungi, and bacterial meal can support the growth of Atlantic salmon without compromising the health of the fish. Thus, MI has a net positive impact on climate and can help achieve some targets in SDG14 by reducing pressure on marine resources used as fish feed ingredients. Suggestions on how to address current bottlenecks in scaling up MIs have also been provided in the chapter.

Details

Higher Education and SDG14: Life Below Water
Type: Book
ISBN: 978-1-83549-250-5

Keywords

Article
Publication date: 18 July 2024

Anindya Bose, Sarthak Sengupta and Sayori Biswas

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering…

Abstract

Purpose

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering closely to pertinent electrochemical characterizations.

Design/methodology/approach

Sensors are the key elements of the modern electronics era through which all the possible physical quantities can be detected and converted into their equivalent electrical form and processed further. But to make the sensing environment better, various types of innovative architectures are being developed nowadays and among them interdigitated electrodes are quite remarkable in terms of their sensing capability. They are a well-qualified candidate in the field of gas sensing and biosensing, but even their sensitivities are getting saturated due to their physical dimensions. Most of the thin film IDEAs fabricated by conventional optical lithographic techniques do not possess a high surface-to-volume ratio to detect the target specified and that reduces their sensitivity factor. In this context, a classic conductive carbon-based highly sensitive three dimensional (3D) IDEA-enabled biosensing system has been conceived on a transparent and flexible substrate to measure the amount of glucose concentration present in human blood. 3D IDEA possesses a way better capacitive sensing behavior compared to conventional thin film microcapacitive electrodes. To transmit the target biological analyte sample property for the detection purpose to the interdigitated array-based sensing platform, the design of a microfluidic channel is initiated on the same substrate. The complex 3D Inter Digital array structure improves the overall capacitance of the entire sensing platform and the reactive surface area as well. The manufactured integrated device displays a decent value of sensitivity in the order of 5.6 µA mM−1 cm−2.

Findings

Development of a low-cost array-based integrated and highly flexible microfluidic biochip to extract the quantity of glucose present in human blood.

Originality/value

Potential future research opportunities in the realm of integrated miniaturized, low-cost smart biosensing systems may arise from this study.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 September 2024

Wanxin Li, Fangfang An, Dawu Shu, Zengshuai Lian, Bo Han and Shaolei Cao

This study aims to elucidate the dyeing kinetics and thermodynamic relationships of CI Reactive Red 24 (RR24) on cotton fabrics, achieve the recycling of inorganic salts and water…

Abstract

Purpose

This study aims to elucidate the dyeing kinetics and thermodynamic relationships of CI Reactive Red 24 (RR24) on cotton fabrics, achieve the recycling of inorganic salts and water resources and obtain comprehensive data on color parameters, fastness and other characteristics of fabrics dyed with the recycled dyeing residual wastewater.

Design/methodology/approach

The dyeing wastewater obtained through advanced oxidation technology was used as a medium for dyeing cotton fabrics with RR24. The absorbance value of the dyeing residue served as an evaluation index, and the relevant kinetic and thermodynamic parameters were calculated based on this absorbance. The color parameters and fastness of the fabric samples were measured to compare the performance of different dyeing media.

Findings

Dyeing cotton with RR24 in both media follows pseudo-second-order kinetics. When dyeing with wastewater media, the dye adsorption in the first 45 min increased by 0.082–1.29 g/kg compared with conventional dyeing. Furthermore, the half-dyeing time was shortened by 4.19–11.99 min and the equilibrium adsorption amount was reduced by 0.277–0.302 g/kg. The adsorption of RR24 on cotton fabrics conformed to the Freundlich model. Fabrics dyed using recycled wastewater exhibit a deeper color, with reduced red light and enhanced blue light, resulting in an overall deeper apparent color.

Originality/value

These dyeing kinetics and thermodynamic properties are beneficial for comprehending and interpreting the dyeing performance and behavior of reactive dyes in dyeing wastewater. They lay a theoretical foundation for the treatment and recycling of dyeing wastewater.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 September 2024

Guotao Zhang, Zan Zhang, Zhaochang Wang, Yanhong Sun, Baohong Tong and Deyu Tu

The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating…

Abstract

Purpose

The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating function of the porous surface. To reveal the repair mechanism of oil film, it is necessary to understand the flow characteristics of oil in micropores. The purpose of this study guides the design of micropore structure to realize the rapid exudation of oil to the porous surface and the rapid repair of the lubricating film.

Design/methodology/approach

In this paper, cylindrical orifice, convergent orifice and divergent orifice were studied. The numerical model of lubricating oil exudation in micropores was established. The distribution characteristics of oil pressure, velocity and three-phase contact line in the process of oil exudation were investigated. The effects of different orifice shapes and orifice structure parameters on the pinning and spreading characteristics of oil droplet were analyzed. Then the internal mechanisms of oil droplet formation and spread on the orifice surface were summarized.

Findings

The results show that during the process of oil exudation, the three-phase contact line of the oil drop is pinned once at the edge of the cylindrical and convergent orifice. Compared with the three orifice structures, the inlet pressure of the oil drop is low, and the oil velocity at the pinning point is stable in the divergent orifice. Resulting in favorable oil exudation. It is easier for oil droplet to depin by appropriately reducing the wall wetting angle, increasing the aperture or controlling the wall inclination angle. Ensure the self-healing and long-lasting lubrication film of porous oil-bearing surfaces.

Practical implications

The effect of pore structure on the flow behavior of lubricating fluid has always been concerned. But the mechanism by which different orifice shape affect the pinning behavior of oil droplets is not yet clear, which is crucial for understanding the self-healing mechanism of oil films on porous surfaces. It is meaningful to analyze the mechanism of oil exudation and spreading on the porous surface of oil in the special orifice, to optimize the design of the orifice structure.

Originality/value

Orifice shape has influence on internal flow field parameters. There is no report on the influence of orifice shape on the film formation process of oil seepage and diffusion from pores. The effects of different orifice shapes and orifice structure parameters on the characteristics of oil droplet pinning and diffusion were studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0118/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 5 of 5