Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 5 October 2022

Stratos Moschidis, Angelos Markos and Athanasios C. Thanopoulos

The purpose of this paper is to create an automatic interpretation of the results of the method of multiple correspondence analysis (MCA) for categorical variables, so that the…

2828

Abstract

Purpose

The purpose of this paper is to create an automatic interpretation of the results of the method of multiple correspondence analysis (MCA) for categorical variables, so that the nonexpert user can immediately and safely interpret the results, which concern, as the authors know, the categories of variables that strongly interact and determine the trends of the subject under investigation.

Design/methodology/approach

This study is a novel theoretical approach to interpreting the results of the MCA method. The classical interpretation of MCA results is based on three indicators: the projection (F) of the category points of the variables in factorial axes, the point contribution to axis creation (CTR) and the correlation (COR) of a point with an axis. The synthetic use of the aforementioned indicators is arduous, particularly for nonexpert users, and frequently results in misinterpretations. The current study has achieved a synthesis of the aforementioned indicators, so that the interpretation of the results is based on a new indicator, as correspondingly on an index, the well-known method principal component analysis (PCA) for continuous variables is based.

Findings

Two (2) concepts were proposed in the new theoretical approach. The interpretative axis corresponding to the classical factorial axis and the interpretative plane corresponding to the factorial plane that as it will be seen offer clear and safe interpretative results in MCA.

Research limitations/implications

It is obvious that in the development of the proposed automatic interpretation of the MCA results, the authors do not have in the interpretative axes the actual projections of the points as is the case in the original factorial axes, but this is not of interest to the simple user who is only interested in being able to distinguish the categories of variables that determine the interpretation of the most pronounced trends of the phenomenon being examined.

Practical implications

The results of this research can have positive implications for the dissemination of MCA as a method and its use as an integrated exploratory data analysis approach.

Originality/value

Interpreting the MCA results presents difficulties for the nonexpert user and sometimes lead to misinterpretations. The interpretative difficulty persists in the MCA's other interpretative proposals. The proposed method of interpreting the MCA results clearly and accurately allows for the interpretation of its results and thus contributes to the dissemination of the MCA as an integrated method of categorical data analysis and exploration.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 10 August 2022

Jie Ma, Zhiyuan Hao and Mo Hu

The density peak clustering algorithm (DP) is proposed to identify cluster centers by two parameters, i.e. ρ value (local density) and δ value (the distance between a point and…

Abstract

Purpose

The density peak clustering algorithm (DP) is proposed to identify cluster centers by two parameters, i.e. ρ value (local density) and δ value (the distance between a point and another point with a higher ρ value). According to the center-identifying principle of the DP, the potential cluster centers should have a higher ρ value and a higher δ value than other points. However, this principle may limit the DP from identifying some categories with multi-centers or the centers in lower-density regions. In addition, the improper assignment strategy of the DP could cause a wrong assignment result for the non-center points. This paper aims to address the aforementioned issues and improve the clustering performance of the DP.

Design/methodology/approach

First, to identify as many potential cluster centers as possible, the authors construct a point-domain by introducing the pinhole imaging strategy to extend the searching range of the potential cluster centers. Second, they design different novel calculation methods for calculating the domain distance, point-domain density and domain similarity. Third, they adopt domain similarity to achieve the domain merging process and optimize the final clustering results.

Findings

The experimental results on analyzing 12 synthetic data sets and 12 real-world data sets show that two-stage density peak clustering based on multi-strategy optimization (TMsDP) outperforms the DP and other state-of-the-art algorithms.

Originality/value

The authors propose a novel DP-based clustering method, i.e. TMsDP, and transform the relationship between points into that between domains to ultimately further optimize the clustering performance of the DP.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 5 February 2024

Marianne Jaakkola, Soila Lemmetty, Kaija Collin, Minna Ylönen and Teuvo Antikainen

This study aims to increase the understanding of the starting points and presuppositions of organizational learning (OL) processes in a hospital’s surgical department based on the…

Abstract

Purpose

This study aims to increase the understanding of the starting points and presuppositions of organizational learning (OL) processes in a hospital’s surgical department based on the existing theory of OL and to make visible the practical possibilities of the theory in this context.

Design/methodology/approach

The study was conducted as a case study. The data were collected from personnel of the hospital’s surgical department and consisted of 26 thematic interviews. The data were analyzed using qualitative theory-driven content analysis.

Findings

This study found different starting points for both employee-oriented and organization-oriented learning processes that could potentially progress to different levels of the organization: from individuals to a wider group or from a large group to an individual. The starting point of employee-oriented learning processes was depicted as everyday life problems or situations or was based on the person’s interest. The starting points of organization-oriented learning processes were described as achieving or maintaining the organization’s expected skill levels, pursuing continuous development or pursuing the organization’s specific development needs. Different kinds of presuppositions were also located within the OL processes.

Originality/value

This study produced new practice-based knowledge about the starting points of OL processes and their presuppositions. In health-care organizations, learning is especially important due to intensive and complex changes, and this study provides empirical evidence on how to enhance learning.

Details

The Learning Organization, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-6474

Keywords

Open Access
Article
Publication date: 19 April 2024

Jonathan Orsini, Kate McCain and Hannah M. Sunderman

The purpose of the current innovative practice paper is to introduce a technique to explore leader identity development and meaning-making that builds on the narrative pedagogical…

Abstract

Purpose

The purpose of the current innovative practice paper is to introduce a technique to explore leader identity development and meaning-making that builds on the narrative pedagogical tradition. In this paper, we recommend a process for combining turning-point graphing and responsive (semi-structured) interviews to co-explore leadership identity development and meaning-making with college students.

Design/methodology/approach

The paper provides student feedback data on the effectiveness of the technique in improving understanding of leader identity and transforming meaning-making.

Originality/value

We hope practitioners can utilize this approach to build leadership identity development and meaning-making capacity in college students.

Details

Journal of Leadership Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1552-9045

Keywords

Open Access
Article
Publication date: 1 April 2024

Stratos Moschidis, Angelos Markos and Dimosthenis Ioannidis

The purpose of this paper is to develop a software-library in the R programming language that implements the concepts of the interpretive coordinate, interpretive axis and…

Abstract

Purpose

The purpose of this paper is to develop a software-library in the R programming language that implements the concepts of the interpretive coordinate, interpretive axis and interpretive plane. This allows for the automatic and reliable interpretation of results from the multiple correspondence analysis (MCA) as previously proposed and published. Consequently, the users can seamlessly apply these concepts to their data, both via R commands and a corresponding graphical interface.

Design/methodology/approach

Within the context of this study, and through extensive literature review, the advantages of developing software using the Shiny library were examined. This library allows for the development of full-stack applications for R users without the need for knowledge of the corresponding technologies required for the development of complex applications. Additionally, the structural components of a Shiny application were presented, leading ultimately to the proposed software application.

Findings

Software utilizing the Shiny library enables nonexpert developers to rapidly develop specialized applications, either to present or to assist in the understanding of objects or concepts that are scientifically intriguing and complex. Specifically, with this proposed application, the users can promptly and effectively apply the scientific concepts addressed in this study to their data. Additionally, they can dynamically generate charts and reports that are readily available for download and sharing.

Research limitations/implications

The proposed package is an implementation of the fundamental concepts of the exploratory MCA method. In the next step, discoveries from the geometric data analysis will be added as features to provide more comprehensive information to the users.

Practical implications

The practical implications of this work include the dissemination of the method’s use to a broader audience. Additionally, the decision to implement it with open-source code will result in the integration of the package’s functions by other third-party user packages.

Originality/value

The proposed software introduces the initial implementation of concepts such as interpretive coordination, the interpretive axis and the interpretive plane. This package aims to broaden and simplify the application of these concepts to benefit stakeholders in scientific research. The software can be accessed for free in a code repository, the link to which is provided in the full text of the study.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 22 August 2023

Mahesh Babu Purushothaman and Kasun Moolika Gedara

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and…

1331

Abstract

Purpose

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and embedded cameras) that aids in manual lifting human pose deduction, analysis and training in the construction sector.

Design/methodology/approach

Using a pragmatic approach combined with the literature review, this study discusses the SVBM. The research method includes a literature review followed by a pragmatic approach and lab validation of the acquired data. Adopting the practical approach, the authors of this article developed an SVBM, an AI program to correlate computer vision (recorded and live videos using mobile and embedded cameras).

Findings

Results show that SVBM observes the relevant events without additional attachments to the human body and compares them with the standard axis to identify abnormal postures using mobile and other cameras. Angles of critical nodal points are projected through human pose detection and calculating body part movement angles using a novel software program and mobile application. The SVBM demonstrates its ability to data capture and analysis in real-time and offline using videos recorded earlier and is validated for program coding and results repeatability.

Research limitations/implications

Literature review methodology limitations include not keeping in phase with the most updated field knowledge. This limitation is offset by choosing the range for literature review within the last two decades. This literature review may not have captured all published articles because the restriction of database access and search was based only on English. Also, the authors may have omitted fruitful articles hiding in a less popular journal. These limitations are acknowledged. The critical limitation is that the trust, privacy and psychological issues are not addressed in SVBM, which is recognised. However, the benefits of SVBM naturally offset this limitation to being adopted practically.

Practical implications

The theoretical and practical implications include customised and individualistic prediction and preventing most posture-related hazardous behaviours before a critical injury happens. The theoretical implications include mimicking the human pose and lab-based analysis without attaching sensors that naturally alter the working poses. SVBM would help researchers develop more accurate data and theoretical models close to actuals.

Social implications

By using SVBM, the possibility of early deduction and prevention of musculoskeletal disorders is high; the social implications include the benefits of being a healthier society and health concerned construction sector.

Originality/value

Human pose detection, especially joint angle calculation in a work environment, is crucial to early deduction of muscoloskeletal disorders. Conventional digital technology-based methods to detect pose flaws focus on location information from wearables and laboratory-controlled motion sensors. For the first time, this paper presents novel computer vision (recorded and live videos using mobile and embedded cameras) and digital image-related deep learning methods without attachment to the human body for manual handling pose deduction and analysis of angles, neckline and torso line in an actual construction work environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

193

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 28 February 2023

Nadia Mohdeb

In this article, the author discusses dynamical behaviors of a prey-predator population model with nonlinear harvesting rate and offers a mathematical analysis of the model.

1085

Abstract

Purpose

In this article, the author discusses dynamical behaviors of a prey-predator population model with nonlinear harvesting rate and offers a mathematical analysis of the model.

Design/methodology/approach

The design is by using modelization of populations interaction, qualitative theory of ordinary différential equations, bifurcations analysis, invariant center manifolds theory and Dulac's criterion.

Findings

The author studies the stability of solutions and the existence of periodic solutions in the model, and proves the existence of some invariant sets and the production of a transcritical together with a saddle-node bifurcation.

Practical implications

The author studies the effects of harvesting on the persistence and extinction properties and its influence in the perspectives of economic views.

Originality/value

The authors considers a predator–prey model with a new nonlinear form of harvesting rate. The author’s intention is to make conceptual adjustments to a well-known predator–prey model in order to incorporate the effects of harvesting.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 14 March 2022

Luke McCully, Hung Cao, Monica Wachowicz, Stephanie Champion and Patricia A.H. Williams

A new research domain known as the Quantified Self has recently emerged and is described as gaining self-knowledge through using wearable technology to acquire information on…

Abstract

Purpose

A new research domain known as the Quantified Self has recently emerged and is described as gaining self-knowledge through using wearable technology to acquire information on self-monitoring activities and physical health related problems. However, very little is known about the impact of time window models on discovering self-quantified patterns that can yield new self-knowledge insights. This paper aims to discover the self-quantified patterns using multi-time window models.

Design/methodology/approach

This paper proposes a multi-time window analytical workflow developed to support the streaming k-means clustering algorithm, based on an online/offline approach that combines both sliding and damped time window models. An intervention experiment with 15 participants is used to gather Fitbit data logs and implement the proposed analytical workflow.

Findings

The clustering results reveal the impact of a time window model has on exploring the evolution of micro-clusters and the labelling of macro-clusters to accurately explain regular and irregular individual physical behaviour.

Originality/value

The preliminary results demonstrate the impact they have on finding meaningful patterns.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Access

Only Open Access

Year

Content type

Earlycite article (1123)
1 – 10 of over 1000