Search results

1 – 2 of 2
Article
Publication date: 5 May 2015

Piotr Derugo and Krzysztof Szabat

Various control structures and approaches are in use nowadays. Development of new ideas allows to obtain better quality in control of different industrial processes and hence…

2522

Abstract

Purpose

Various control structures and approaches are in use nowadays. Development of new ideas allows to obtain better quality in control of different industrial processes and hence better quality of products. As it may seem that everything in the classical systems has already been discovered, more and more research centres are tending to incorporate fuzzy or neural control systems. The purpose of this paper is to present an application of the adaptive neuro-fuzzy PID speed controller for a DC drive system with a complex nonlinear mechanical part.

Design/methodology/approach

The model of the driven object including such elements as nonlinear shaft with backlash and friction has been modelled using Matlab-Simulink software. Afterwards experimental verification has been made using a dSPACE control card and experimental system with two DC motors connected with an elastic shaft.

Findings

The presented study shown that the adaptive controller is able to damp the torsional vibration effectively even for the wide range of the system nonlinearities. What is more the design approach for controllers design parameters has been described. Proposed approach is based on requested properties of system. Using proposed tuning scheme no detailed information about the object are needed.

Originality/value

This paper presents for the first time fully an PID adaptive neuro-fuzzy controller. The inputs are the weighted tracking error, error’s derivative and integrated error. What is more the adaptation algorithm consists of a model tracking error its derivative and integer. Also the proposed tuning algorithm in such a form is an original outcome.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Piotr Serkies and Krzysztof Szabat

The purpose of this paper is to design and test a linear predictive control algorithm with elements of fuzzy logic in the non-linear speed region of a two-mass system with a…

Abstract

Purpose

The purpose of this paper is to design and test a linear predictive control algorithm with elements of fuzzy logic in the non-linear speed region of a two-mass system with a flexible shaft.

Design/methodology/approach

To compensate the non-linearity of friction in the low-speed region, the elements of the Q matrix have been retuned with the use of fuzzy logic. First, the influence of the Q matrix on the dynamics of the drive has been discussed. On the basis of these findings a fuzzy system has been developed.

Findings

It has been demonstrated that applying a relatively simple fuzzy system can reduce unwanted non-linear phenomena in the low-speed region; at the same time, the dynamics of the drive in the other regions is not deteriorated.

Originality/value

The solutions presented in the paper are original and have not been published so far. The influence of non-linear friction on the work of the drive in the low-speed region at different values of the matrix Q has been shown. Also, a novel system of online adjustment of the values of the Q matrix in a predictive speed controller has been introduced. Besides, the system has been compared against the classical predictive regulator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2