Search results

1 – 3 of 3
Article
Publication date: 3 July 2024

Huijie Jin, Suihan Sui and Changyin Gao

Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage…

Abstract

Purpose

Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage over the use of quartz disk, but research into the torsional effect of quartz pillar is rare. This paper aims to investigate a novel type of torque sensor based on piezoelectric torsional effect.

Design/methodology/approach

Based on the theory of anisotropic elasticity and the Maxwell electromagnetism, the torsion stress and distribution of surface charge of a rectangular quartz pillar are calculated. Using finite element analysis, the polarized electric field of the piezoelectric pillar is solved. According to the theoretical calculation of torsional effect of piezoelectric quartz pillar, detection electrodes are mounted on the surface of the quartz pillar and a new type of torque sensor is designed.

Findings

The calibration experimental results show that the bound charges are proportional to the torque applied, and the torque sensor has fully reached the dynamometer standard.

Originality/value

This paper shows that the torsional effect of the developed piezoelectric quartz pillar can be used to create a new type of piezoelectric torque sensor.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 April 2024

Baoxu Tu, Yuanfei Zhang, Kang Min, Fenglei Ni and Minghe Jin

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction…

Abstract

Purpose

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction methods: handcrafted features, convolutional features and autoencoder features. Subsequently, these features were mapped to contact locations through a contact location regression network. Finally, the network performance was evaluated using spherical fittings of three different radii to further determine the optimal feature extraction method.

Design/methodology/approach

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image.

Findings

This research indicates that data collected by probes can be used for contact localization. Introducing a batch normalization layer after the feature extraction stage significantly enhances the model’s generalization performance. Through qualitative and quantitative analyses, the authors conclude that convolutional methods can more accurately estimate contact locations.

Originality/value

The paper provides both qualitative and quantitative analyses of the performance of three contact localization methods across different datasets. To address the challenge of obtaining accurate contact locations in quantitative analysis, an indirect measurement metric is proposed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 August 2023

Yi Xie and Baojin Zheng

This paper aims to apply the novel numerical model to analyze the effect of pillar material on the response of compound quartz crystal resonator (QCR) with an array of pillars…

Abstract

Purpose

This paper aims to apply the novel numerical model to analyze the effect of pillar material on the response of compound quartz crystal resonator (QCR) with an array of pillars. The performance of the proposed device compared to conventional QCR method was also investigated.

Design/methodology/approach

A finite element method model was developed to analyze the behavior of QCR coupled with an array of pillars. The model was composed of an elastic pillar, a solution and a perfectly matched layer. The validation of the model was performed through a comparison between its predictions and previous experimental measurements. Notably, a good agreement was observed between the predicted results and the experimental data.

Findings

The effect of pillar Young’s modulus on the coupled QCR and pillars with a diameter of 20 µm, a center-to-center spacing of 40 µm and a density of 2,500 kg/m3 was investigated. The results indicate that multiple vibration modes can be obtained based on Young’s modulus. Notably, in the case of the QCR–pillar in air, the second vibration mode occurred at a critical Young’s modulus of 0.2 MPa, whereas the first mode was observed at 3.75 Mpa. The vibration phase analysis revealed phase-veering behavior at the critical Young’s modulus, which resulted in a sudden jump-and-drop frequency shift. In addition, the results show that the critical Young’s modulus is dependent on the surrounding environment of the pillar. For instance, the critical Young’s modulus for the first mode of the pillar is approximately 3.75 Mpa in air, whereas it increases to 6.5 Mpa in water.

Originality/value

It was concluded that the performance of coupled QCR–pillar devices significantly depends on the pillar material. Therefore, choosing pillar material at critical Young’s modulus can lead to the maximum frequency shift of coupled QCR–pillar devices. The model developed in this work helps the researchers design pillars to achieve maximum frequency shift in their measurements using coupled QCR–pillar.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Access

Year

Last month (3)

Content type

1 – 3 of 3