Search results

1 – 4 of 4
Article
Publication date: 10 January 2023

Neha Choudhary, Chandrachur Ghosh, Varun Sharma, Partha Roy and Pradeep Kumar

The purpose of this paper is to fabricate the scaffolds with different pore architectures using additive manufacturing and analyze its mechanical and biological properties for…

Abstract

Purpose

The purpose of this paper is to fabricate the scaffolds with different pore architectures using additive manufacturing and analyze its mechanical and biological properties for bone tissue engineering applications.

Design/methodology/approach

The polylactic acid (PLA)/composite filament were fabricated through single screw extrusion and scaffolds were printed with four different pore architectures, i.e. circle, square, triangle and parallelogram with fused deposition modelling. Afterwards, scaffolds were coated with hydroxyapatite (HA) using dip coating technique. Various physical and thermo-mechanical tests have been conducted to confirm the feasibility. Furthermore, the biological tests were conducted with MG63 fibroblast cell lines to investigate the biocompatibility of the developed scaffolds.

Findings

The scaffolds were successfully printed with different pore architectures. The pore size of the scaffolds was found to be nearly 1,500 µm, and porosity varied between 53% and 63%. The fabricated circular pore architecture resulted in highest average compression strength of 13.7 MPa and modulus of 525 MPa. The characterizations showed the fidelity of the work. After seven days of cell culture, it was observed that the developed composites were non-toxic and supported cellular activities. The coating of HA made the scaffolds bioactive, showing higher wettability, degradation and high cellular responses.

Originality/value

The research attempts highlight the development of novel biodegradable and biocompatible polymer (PLA)/bioactive ceramic (Al2O3) composite for additive manufacturing with application in the tissue engineering field.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Book part
Publication date: 4 December 2023

Stuart Cartland

Abstract

Details

Constructing Realities
Type: Book
ISBN: 978-1-83797-546-4

Article
Publication date: 3 April 2023

Sebi Neelamkavil Pappachan

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of…

Abstract

Purpose

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of flexible AC transmission systems (FACTS) devices. Here, the speed with fitness-based krill herd algorithm (SF-KHA) is adopted for deciding the FACTS devices’ optimal sizing and placement integrated with wind power. Here, the modified SF-KHA optimizes the sizing and location of FACTS devices for attaining the minimum average production cost and real power depletions of the system. Especially, the objective includes reserve cost for overestimation, cost of thermal generation of the wind power, direct cost of scheduled wind power and penalty cost for underestimation. The efficiency of the offered method over several popular optimization algorithms has been done, and the comparison over different algorithms establishes proposed KHA algorithm attains the accurate optimal efficiency for all other algorithms.

Design/methodology/approach

The proposed FACTS devices-based power system with the integration of wind generators is based on the accurate placement and sizing of FACTS devices for decreasing the actual power loss and total production cost of the power system.

Findings

Through the cost function evaluation of the offered SF-KHA, it was noted that the proposed SF-KHA-based power system had secured 13.04% superior to success history-based adaptive differential evolution, 9.09% enhanced than differential evolution, 11.5% better than artificial bee colony algorithm, 15.2% superior to particle swarm optimization and 9.09% improved than flower pollination algorithm.

Originality/value

The proposed power system with the accurate placement and sizing of FACTS devices and wind generator using the suggested SF-KHA was effective when compared with the conventional algorithm-based power systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 1 September 2023

Ishu Chadda

Abstract

Details

Social Sector Development and Inclusive Growth in India
Type: Book
ISBN: 978-1-83753-187-5

Access

Year

Last 12 months (4)

Content type

1 – 4 of 4