Search results

1 – 10 of 167
Article
Publication date: 5 June 2023

Takumi Yamaguchi and Fuminobu Ozaki

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope…

45

Abstract

Purpose

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections at fire and post fire.

Design/methodology/approach

Steady-state tests from ambient temperature (20 °C) to 800 °C, transient-state tests under the allowable design tensile force and tensile tests in an ambient temperature environment after heating (heating temperatures of 200–800 °C) were conducted.

Findings

The tensile strengths of the wire rope and end-connection specimens at both fire and post fire were obtained. The steel wire rope specimens possessed larger reduction factors than general hot-rolled mild steels (JIS SS400) and high-strength steel bolts (JIS F10T). The end-connection specimens with sufficient socket lengths exhibited ductile fracture of the wire rope part at both fire and post fire; however, those with short socket lengths experienced a pull-out fracture at the socket.

Originality/value

The fundamental and important tensile test results of the super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections were accumulated at fire and post fire, and the fracture modes were clarified. The obtained test results contribute to fire resistance performance-based design of cable steel structures at fire and fire-damage investigations to consider their reusability post fire.

Article
Publication date: 9 October 2023

Zhijie Yuan, Hao Wang, Rou Li, Jianxiao Mao and Hui Gao

This paper aims to investigate the equivalent relationship between accelerated corrosion tests and real environmental spectrum of suspenders in long-span suspension bridge…

Abstract

Purpose

This paper aims to investigate the equivalent relationship between accelerated corrosion tests and real environmental spectrum of suspenders in long-span suspension bridge considering multiple factors action.

Design/methodology/approach

Based on Faraday's law, corrosion current was used as a measure of metal corrosion, and the equivalent conversion relationship between laboratory environment and real service environment was established. The equivalent conversion method for bridge structural steel had been determined under different temperature, humidity, pH value and NaCl concentration conditions. The compilation of environmental spectra for large span bridges considering multiple factors and the principle of equivalent conversion have been proposed.

Findings

Environmental factors, including temperature, humidity, pH value and NaCl concentration, have significant impact on the corrosion degree of suspension steel wires, and only considering these two factors for equivalent conversion cannot accurately reflect the true service environment of the bridge. The 33.8-h salt spray accelerated corrosion test using the standard conditions can be equivalent to one year of suspenders corrosion in a real service environment.

Originality/value

The equivalent accelerated corrosion method for steel wires proposed in this study can effectively predict the corrosion degree of the suspenders, which has been verified to be correct and can provide theoretical guidance for the development of corrosion test plans for steel wires and engineering technical basis for anti-corrosion control and calendar life research of suspension bridge suspenders.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes…

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 December 2023

Jingxiao Shu, Yao Lu and Yan Liang

To understand the seismic behavior of reinforced concrete (RC) beams confined by corroded stirrups, low-reversed cyclic loading tests were carried out on seven RC beam specimens…

Abstract

Purpose

To understand the seismic behavior of reinforced concrete (RC) beams confined by corroded stirrups, low-reversed cyclic loading tests were carried out on seven RC beam specimens with different stirrup corrosion levels and stirrup ratios to investigate their mechanical characteristics.

Design/methodology/approach

The failure mode, hysteresis behavior, skeleton curves, ductility, stiffness degradation and energy dissipation behavior of RC specimens are compared and discussed. The experimental results showed that the restraint of concrete provided by corroded stirrups is reduced, which leads to a decline in seismic performance.

Findings

For the specimens with the same ratios of stirrup, as the corrosion level increased, the load-carrying capacity, stiffness, plastic deformation capacity and energy-dissipation capacity dropped significantly. Compared with the uncorroded specimen, the failure modes of specimens with high corrosion level changed from ductile bending failure to brittle failure. For the specimens with the same levels of corrosion, the higher the stirrup ratio was, the stronger the restraint effect of the stirrups on the concrete, and the seismic behavior of the specimens was obviously improved.

Originality/value

In this paper, a total of seven full-size RC beam specimens at joints with different stirrup corrosion levels and stirrup ratios were designed and constructed to explore the influences of corrosion levels and stirrup ratios of stirrups on the seismic performances. The failure modes, strain of reinforcement, hysteretic curves, skeleton curves, stiffness degradation and ductility factor of RC specimens are compared and discussed.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 21 December 2023

Rafael Pereira Ferreira, Louriel Oliveira Vilarinho and Americo Scotti

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards…

Abstract

Purpose

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies.

Design/methodology/approach

For the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness).

Findings

The results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness.

Originality/value

This paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 May 2022

Srinivasan Vadivel, Boopathi C.S., Sridhar R. and Tarana Kaovasia

The aim of this research study is to mitigate shading impact on solar photovoltaic array. Photovoltaic (PV) array when getting shaded not only results in appreciable power loss…

Abstract

Purpose

The aim of this research study is to mitigate shading impact on solar photovoltaic array. Photovoltaic (PV) array when getting shaded not only results in appreciable power loss but also exhibits multiple power peaks. Due to these multiple power peaks, the maximum power point tracking (MPPT) controllers’ performance will be affected, as most of the times it ends up in tracking the local maximum power peak and not the global power peak.

Design/methodology/approach

The PV panels in an PV array when getting shaded even partially would result in huge power loss. The pattern of shading also plays a crucial role, as it renders a cascaded impact on the overall power output because the cells/panels are connected in series and are parallel. Therefore, during shading, intelligent schemes are needed to appropriately connect and discard the unhealthy and healthy panels in right place with right combination. This research proposes one such scheme to mitigate the shading impact.

Findings

To mitigate the shading impact and also to have a smooth power-voltage (P-V) curve, a new series inducing switching scheme is introduced. The proposed scheme not only mitigates the shading impact and enhances the output power but also smoothens the P-V curve that facilitates the MPPTs to track the P-V appropriately.

Originality/value

The research findings are inventive in nature and not copied work. The reference works and the inspirations have been duly cited and credited.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 April 2024

Zhe Liu, Yichen Yang and Xiuchen Wang

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily…

Abstract

Purpose

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily shield electromagnetic waves through reflection, which can lead to the formation of resonance effects that severely compromise their protective capabilities and potentially cause secondary electromagnetic pollution in the external environment.

Design/methodology/approach

In this paper, carbon nanotube fibers are added via spacing method to replace some stainless-steel fibers to impart absorbing properties to stainless-steel EMS fabric. The shielding effectiveness (SE) of the EMS fabrics across various polarization directions is analyzed. Additionally, a spacing arrangement for the carbon nanotube fibers is designed. The EMS fabric with carbon nanotube fibers is manufactured using a semi-automatic sample loom, and its SE is tested using a small window method test box in both vertical and horizontal polarization directions.

Findings

According to the experimental data and electromagnetic theory analysis, it is determined that when the spacing between the carbon nanotube fibers is less than a specific distance, the SE of the stainless-steel EMS fabric significantly improves. The fabric exhibits stable absorbing properties within the tested frequency range, effectively addressing the issue of secondary damage that arises from relying solely on reflective shielding. Conversely, as the spacing between the carbon nanotube fibers exceeds this distance, the SE diminishes. Notably, the SE in the vertical polarization direction is substantially higher than that in the horizontal polarization direction at the same frequency.

Originality/value

This study provides a new path for the development of high-performance EMS fabrics with good wave-absorption characteristics and SE.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Content available
Article
Publication date: 29 September 2022

Kaiyuan Wu, Hao Huang, Ziwei Chen, Min Zeng and Tong Yin

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding…

Abstract

Purpose

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding power supply. So a novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter is proposed in this work.

Design/methodology/approach

A simple parallel full-bridge LLC resonant converter structure is used to design the digital power supply with high welding current, low arc voltage, high open-circuit voltage and a wide range of arc loads, by effectively exploiting the variable load and high-power applications of LLC resonant converter.

Findings

The efficiency of each converter can reach up to 92.3%, under the rated operating condition. Notably, with proposed scheme, a short-circuit current mutation of 300 A can stabilize at 60 A within 8 ms. Furthermore, the pulsed MIG welding test shows that a stable welding process with 280 A peak current can be realized and a well-formed weld bead can be obtained, thereby verifying the feasibility of LLC resonant converter for pulsed MIG welding power supply.

Originality/value

The high efficiency, high power density and weak EMI of LLC resonant converter are conducive to the further optimization of pulsed MIG welding power supply. Consequently, a high performance welding power supply is implemented by taking adequate advantages of LLC resonant converter, which can provide equipment support for exploring better pulsed MIG welding processes.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 31 May 2022

Sutapa Mondal and Arup Kumar Nandi

The purpose of this paper is to design an improved parallel regenerative braking system (IPRBS) for electric vehicles (EVs) that increases energy recovery with a constant brake…

Abstract

Purpose

The purpose of this paper is to design an improved parallel regenerative braking system (IPRBS) for electric vehicles (EVs) that increases energy recovery with a constant brake pedal feel (BPF).

Design/methodology/approach

The conventional hydro-mechanical braking system is redesigned by incorporating a reversing linear solenoid (RLS) and allowed to work in parallel with a regenerative brake. A braking algorithm is proposed, and correspondingly, a control system is designed for the IPRBS for its proper functioning, and a mathematical model is formulated considering vehicle drive during braking. The effectiveness of IPRBS is studied by analyzing two aspects of regenerative braking (BPF and regenerative efficiency) and the impact of regenerative braking contribution to range extension and energy consumption reduction under European Union Urban Driving Cycle (ECE).

Findings

IPRBS is found to maintain a constant BPF in terms of deceleration rate vs pedal displacement during the entire braking period irrespective of speed change and deceleration rate. The regenerative ratio of IPRBS is found to be high compared with conventional parallel regenerative braking, but it is quite the same at high deceleration.

Originality/value

A constant BPF is achieved by introducing an RLS between the input pushrod and booster input rod with appropriate controller design. Comparative analysis of energy regenerated under different regenerative conditions establishes the originality of IPRBS. An average contribution ratio to energy consumption reduction and driving range extension of IPRBS in ECE are obtained as 18.38 and 22.76, respectively.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 167