Search results

1 – 10 of 177
Article
Publication date: 15 August 2023

Evelyne Vanpoucke and Robert D. Klassen

Forced labour is one of the most exploitative practices in supply chains, generating serious human right abuses. The authors seek to understand how relationships for reducing…

Abstract

Purpose

Forced labour is one of the most exploitative practices in supply chains, generating serious human right abuses. The authors seek to understand how relationships for reducing forced labour are influenced by institutional logics. The emerging supply chain efforts of social enterprises offer particularly intriguing approaches, as their social mission can spur creative new approaches and reshape widely adopted management practices.

Design/methodology/approach

The authors study supplier relationships in the smartphone industry and compare the evolving practices of two cases: the first, a growing novel social enterprise; and the second, a high-profile commercial firm that has adopted a progressive role in combating forced labour.

Findings

The underlying institutional logic influenced each firm's willingness to act beyond its direct suppliers and to collaborate in flexible ways that create systematic change. Moreover, while both focal firms had clear, well-documented procedures related to forced labour, the integration, rather than decoupling, of forced labour and general supply chain policies provided a more effective way to reduce the risks of forced labour in social enterprises.

Research limitations/implications

As authors’ comparative case study approach may lack generalizability, future research is needed to broadly test their propositions.

Practical implications

The paper identifies preconditions in terms of institutional logics to successfully reduce the risk of forced labour in supply chains.

Originality/value

This paper discusses how social enterprises can provide a learning laboratory that enables commercial firms to identify options for supplier relationship improvement.

Details

International Journal of Operations & Production Management, vol. 44 no. 10
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 2 September 2024

Hongbin Li, Zhihao Wang, Nina Sun and Lianwen Sun

Considering the influence of deformation error, the target poses must be corrected when compensating for positioning error but the efficiency of existing positioning error…

Abstract

Purpose

Considering the influence of deformation error, the target poses must be corrected when compensating for positioning error but the efficiency of existing positioning error compensation algorithms needs to be improved. Therefore, the purpose of this study is to propose a high-efficiency positioning error compensation method to reduce the calculation time.

Design/methodology/approach

The corrected target poses are calculated. An improved back propagation (BP) neural network is used to establish the mapping relationship between the original and corrected target poses. After the BP neural network is trained, the corrected target poses can be calculated with short notice on the basis of the pose correction similarity.

Findings

Under given conditions, the calculation time when the trained BP neural network is used to predict the corrected target poses is only 1.15 s. Compared with the existing algorithm, this method reduces the calculation time of the target poses from the order of minutes to the order of seconds.

Practical implications

The proposed algorithm is more efficient while maintaining the accuracy of the error compensation.

Originality/value

This method can be used to quickly position the error compensation of a large parallel mechanism.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 10 July 2024

Michele Conconi, Nicola Sancisi, Reid Backus, Christian Argenti and Albert J Shih

3D-printed devices proved their efficacy across different clinical applications, helping personalize medical treatments. This paper aims to present the procedure for the design…

Abstract

Purpose

3D-printed devices proved their efficacy across different clinical applications, helping personalize medical treatments. This paper aims to present the procedure for the design and production of patient-specific dynamic simulators of the human knee. The scope of these simulators is to improve surgical outcomes, investigate the motion and load response of the human knee and standardize in-vitro experiments for testing orthopedic devices through a personalized physical representation of the patient’s joint.

Design/methodology/approach

This paper tested the approach on three volunteers. For each, a patient-specific mathematical joint model was defined from an magnetic resonance imaging (MRI) of the knee. The model guided the CAD design of the simulators, which was then realized through stereolithography printing. Manufacturing accuracy was tested by quantifying the differences between 3D-printed and CAD geometry. To assess the simulator functionality, its motion was measured through a stereophotogrammetric system and compared with the natural tibio-femoral motion of the volunteers, measured as a sequence of static MRI.

Findings

The 3D-printing accuracy was very high, with average differences between ideal and printed parts below ± 0.1 mm. However, the assembly of different 3D-printed parts resulted in a higher average error of 0.97 mm and peak values of 2.33 mm. Despite that, the rotational and translational accuracy of the simulator was about 5° and 4 mm, respectively.

Originality/value

Although improvements in the production process are needed, the proposed simulators successfully replicated the individual articular behavior. The proposed approach is general and thus extendible to other articulations.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

852

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 July 2024

Md Helal Miah, Dharmahinder Singh Chand and Gurmail Singh Malhi

The pivotal aspect of aircraft assembly lies in precise measurement accuracy. While a solitary digital measuring tool suffices for analytical and small surfaces, it falls short…

Abstract

Purpose

The pivotal aspect of aircraft assembly lies in precise measurement accuracy. While a solitary digital measuring tool suffices for analytical and small surfaces, it falls short for extensive synthetic surfaces like aircraft fuselage panels and wing spars. The purpose of this study is to develop a “combined measurement method” (CMM) that enhances measurement quality and expands the evaluative scope, addressing the limitations posed by singular digital devices in meeting measurement requirements across various aircraft components.

Design/methodology/approach

The study illustrated the utilization of the CMM by combining a laser tracker and a portable arm-measuring machine. This innovative approach is tailored to address the intricate nature and substantial dimensions of aircraft fuselage panels. The portable arm-measuring machine performs precise scans of panel components, while common points recorded by the laser tracker undergo coordinate conversion to reconstruct the fuselage panel’s shape. The research outlines the CMM’s measurement procedure and scrutinizes the data processing technique. Ultimately, the investigation yields a deviation vector matrix and chromatogram deviation distribution, pivotal in achieving enhanced measurement precision for the novel CMM device.

Findings

The use of CMM noticeably enhances fuselage panel assembly accuracy, concurrently reducing assembly time and enhancing efficiency compared to conventional measurement systems.

Practical implications

The research’s practical implication lies in revolutionizing aircraft assembly by mitigating accuracy issues through the innovative digital CMM for aircraft synthetic structure type product (aircraft fuselage panel). This ensures safer flights, reduces rework and enhances overall efficiency in the aerospace industry.

Originality/value

Introducing a new aircraft assembly accuracy compensation method through digital combined measurement, pioneering improved assembly precision. Also, it enhances aerospace assembly quality, safety and efficiency, offering innovative insights for optimized aviation manufacturing processes.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 August 2024

Hamid Moradlou, Heather Skipworth, Lydia Bals, Emel Aktas and Samuel Roscoe

This paper seeks insights into how multinational enterprises restructure their global supply chains to manage the uncertainty caused by geopolitical disruptions. To answer this…

Abstract

Purpose

This paper seeks insights into how multinational enterprises restructure their global supply chains to manage the uncertainty caused by geopolitical disruptions. To answer this question, we investigate three significant geopolitical disruptions: Brexit, the US-China trade war and the coronavirus disease 2019 (Covid-19) pandemic.

Design/methodology/approach

The study uses an inductive theory-elaboration approach to build on Organisational Learning Theory and Dunning’s eclectic paradigm of international production. Twenty-nine expert interviews were conducted with senior supply chain executives across 14 multinational manufacturing firms. The analysis is validated by triangulating secondary data sources, including standard operating procedures, annual reports and organisational protocols.

Findings

We find that, when faced with significant geopolitical disruptions, companies develop and deploy supply chain structural ambidexterity in different ways. Specifically, during Covid-19, the US-China trade war and Brexit, companies developed and deployed three distinct types of supply chain structural ambidexterity through (1) partitioning internal subunits, (2) reconfiguring supplier networks and (3) creating parallel supply chains.

Originality/value

The findings contribute to Dunning’s eclectic paradigm by explaining how organisational ambidexterity is extended beyond firm boundaries and embedded in supply chains to mitigate uncertainty and gain exploration and exploitation benefits. During significant geopolitical disruptions, we find that managers make decisions in tight timeframes. Therefore, based on the transition time available, we propose three types of supply chain structural ambidexterity. We conclude with a managerial framework to assist firms in developing supply chain structural ambidexterity in response to geopolitical disruptions.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 30 August 2024

Mingzhe Tao, Jinghua Xu, Shuyou Zhang and Jianrong Tan

This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical…

Abstract

Purpose

This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical design, as well as numerous physical verifications, which can be employed for creating high-quality prototypes of parallel robots in a variety of applications.

Design/methodology/approach

A novel subregional meta-heuristic iteration (SMI) method is proposed for the optimization of parallel robots. Multiple subregional optimization objectives are established and optimization is achieved through the utilisation of an enhanced meta-heuristic optimization algorithm, which roughly employs chaotic mapping in the initialization strategy to augment the diversity of the initial solution. The non-dominated sorting method is utilised for updating strategies, thereby achieving multi-objective optimization.

Findings

The actuator error under the same trajectory is visibly reduced after SMI, with a maximum reduction of 6.81% and an average reduction of 1.46%. Meanwhile, the response speed, maximum bearing capacity and stiffness of the mechanism are enhanced by 63.83, 43.98 and 97.51%, respectively. The optimized mechanism is more robust and the optimization process is efficient.

Originality/value

The proposed robustness multi-objective optimization via SMI is more effective in improving the performance and precision of the parallel mechanisms in various applications. Furthermore, it provides a solution for the rapid and high-quality optimization design of parallel robots.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Expert briefing
Publication date: 4 September 2024

Many protesters demand the resignation of Chief Minister Mamata Banerjee, who leads the All India Trinamool Congress (TMC) party. Prime Minister Narendra Modi’s Bharatiya Janata…

Details

DOI: 10.1108/OXAN-DB289419

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 11 June 2024

Xiangbo He, Xiaosheng Liang, Ruirui Li, Kai Zhang, Wenchuan Chen and Yunfeng Peng

This study aims to explore the impact of multisource deformation errors on the oil film contact surface, which arise from manufacturing, assembly, oil pressure and thermal…

Abstract

Purpose

This study aims to explore the impact of multisource deformation errors on the oil film contact surface, which arise from manufacturing, assembly, oil pressure and thermal influences, on the motion accuracy of hydrostatic guideway.

Design/methodology/approach

Using thermal-structural coupling simulations, this research investigates the effects of assembly, oil pressure and thermal factors on deformation errors of the oil film contact surface. By integrating these with manufacturing errors, a profile error model for the oil film contact surface is developed, characterizing the cumulative effect of these errors. Using kinematic theory and progressive Mengen flow controller characteristics, the motion error at any position of the hydrostatic guideway is quantified, examining how surface error traits impact motion accuracy.

Findings

The error averaging effect is affected by the profile error of oil film contact surface. Meanwhile, the motion accuracy of hydrostatic guideway is highly sensitive to the oil film contact surface error amplitude.

Originality/value

This approach allows for precise prediction and analysis of motion accuracy in hydrostatic guideways during the design and manufacturing stages. It also provides guidance for planning process tolerances.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0063/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 July 2024

Peng Gao, Xiuqin Su, Zhibin Pan, Maosen Xiao and Wenbo Zhang

This study aims to promote the anti-disturbance and tracking accuracy performance of the servo systems, in which a modified active disturbance rejection control (MADRC) scheme is…

Abstract

Purpose

This study aims to promote the anti-disturbance and tracking accuracy performance of the servo systems, in which a modified active disturbance rejection control (MADRC) scheme is proposed.

Design/methodology/approach

An adaptive radial basis function (ARBF) neural network is utilized to estimate and compensate dominant friction torque disturbance, and a parallel high-gain extended state observer (PHESO) is employed to further compensate residual and other uncertain disturbances. This parallel compensation structure reduces the burden of single ESO and improves the response speed of permanent magnet synchronous motor (PMSM) to hybrid disturbances. Moreover, the sliding mode control (SMC) rate is introduced to design an adaptive update law of ARBF.

Findings

Simulation and experimental results show that as compared to conventional ADRC and SMC algorithms, the position tracking error is only 2.3% and the average estimation error of the total disturbances is only 1.4% in the proposed MADRC algorithm.

Originality/value

The disturbance parallel estimation structure proposed in MADRC algorithm is proved to significantly improve the performance of anti-disturbance and tracking accuracy.

1 – 10 of 177