Search results

1 – 10 of 37
Article
Publication date: 12 January 2024

Gowtham G. and Jagan Raj R.

The purpose of this study is to find the suitable trajectory path of the Numerical model of the Quadcopter. Quadcopters are widely used in various applications due to their…

Abstract

Purpose

The purpose of this study is to find the suitable trajectory path of the Numerical model of the Quadcopter. Quadcopters are widely used in various applications due to their compact size and ease of assembly. Because they are quite unstable, autonomous control systems would be used to overcome this problem. Modelling autonomous control is predominant as the research scope faces challenges because of its highly non-linear, multivariable system with 6 degree of freedom.

Design/methodology/approach

Quadcopters with antonym systems can operate in an unknown environment by overcoming unexpected disturbances. The first objective when designing such a system is to design an accurate mathematical model to describe the dynamics of the system. Newton’s law of motion was used to build the mathematical model of the system.

Findings

Establishment of the mathematical model and the physics behind a four propeller drone for the frame TAROT 650 carbon was done. Simulink model was developed based on the mathematical model for simulating the complete dynamics of the drone as well as location and gusts were included to check the stability.

Originality/value

The control response of the system was simulated numerically results are discussed. The trajectory path was found. The phases with their own parameters can be used to implement the mathematical model for another type of quadcopter model and achieve quick development.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 February 2024

Yi Xia, Yonglong Li, Hongbin Zang, Yanpian Mao, Haoran Wang and Jialong Li

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the…

Abstract

Purpose

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the requirements of VBS for small AUVs are analyzed. Second, a modular VBS with high extensibility and easy integration is proposed based on the concepts of generality and interchangeability. Subsequently, a depth-switching controller is proposed based on the modular VBS, which combines the best features of the linear active disturbance rejection controller and the nonlinear active disturbance rejection controller.

Design/methodology/approach

The controller design and endurance of tiny AUVs are challenging because of their low environmental adaptation, limited energy resources and nonlinear dynamics. Traditional and single linear controllers cannot solve these problems efficiently. Although the VBS can improve the endurance of AUVs, the current VBS is not extensible for small AUVs in terms of the differences in individuals and operating environments.

Findings

The switching controller’s performance was examined using simulation with water flow and external disturbances, and the controller’s performance was compared in pool experiments. The results show that switching controllers have greater effectiveness, disturbance rejection capability and robustness even in the face of various disturbances.

Practical implications

A high degree of standardization and integration of VBS significantly enhances the performance of small AUVs. This will help expand the market for small AUV applications.

Originality/value

This solution improves the extensibility of the VBS, making it easier to integrate into different models of small AUVs. The device enhances the endurance and maneuverability of the small AUVs by adjusting buoyancy and center of gravity for low-power hovering and pitch angle control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 February 2024

Muhammad Nabeel Siddiqui, Xiaolu Zhu, Hanad Rasool, Muhammad Bilal Afzal and Nigar Ahmed

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to…

Abstract

Purpose

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to achieve trajectory tracking of quadrotor in the Cartesian plane.

Design/methodology/approach

To achieve trajectory tracking control, firstly the decoupled rotational and translational model of quadrotor are modified by introducing backstepped state-space variables. In the second step, robust integral sliding mode control is designed based on the proportional-integral-derivative (PID) technique. In the third step, a DO is constructed. In next step, the measurable outputs, i.e. rotational and translational state variables, are used to design the LPO. Finally, in the control algorithm all state variables and its rates are replaced with its estimates obtained using the state-observer.

Findings

The finding includes output-feedback control (OFC) algorithm designed by using a LPO. A modified backstepping model for rotational and rotational systems is developed prior to the design of integral sliding mode control based on PID technique. Unlike traditional high-gain observers (HGO), this paper used the LPO for state estimation of quadrotor systems to solve the problem of peaking phenomenon in HGO. Furthermore, a nonlinear DO is designed such that it attenuates disturbance with unknown magnitude and frequency. Moreover, a chattering reduction criterion has been introduced to solve the inherited chattering issue of controllers based on sliding mode technique.

Practical implications

This paper presents input and output data-driven model-free control algorithm. That is, only input and output of the quadrotor model are required to achieve the trajectory tracking control. Therefore, for practical implementation, the number of on-board sensor is reduced.

Originality/value

Although extensive research has been done for designing OFC algorithms for quadrotor, LPO has never been implemented for the rotational and translational state estimations of quadrotor. Furthermore, the mathematical model of rotational and translational systems is modified by using backstepped variables followed by the controller designed using PID and integral sliding mode control technique. Moreover, a DO is developed for attenuation of disturbance with unknown bound, magnitude and frequency.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 September 2023

Mingyu Wu, Che Fai Yeong, Eileen Lee Ming Su, William Holderbaum and Chenguang Yang

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption…

Abstract

Purpose

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption models, energy-efficient locomotion, hardware energy consumption, optimization in path planning and scheduling methods, and to suggest future research directions.

Design/methodology/approach

The systematic literature review (SLR) identified 244 papers for analysis. Research articles published from 2010 onwards were searched in databases including Google Scholar, ScienceDirect and Scopus using keywords and search criteria related to energy and power management in various robotic systems.

Findings

The review highlights the following key findings: batteries are the primary energy source for AMRs, with advances in battery management systems enhancing efficiency; hybrid models offer superior accuracy and robustness; locomotion contributes over 50% of a mobile robot’s total energy consumption, emphasizing the need for optimized control methods; factors such as the center of mass impact AMR energy consumption; path planning algorithms and scheduling methods are essential for energy optimization, with algorithm choice depending on specific requirements and constraints.

Research limitations/implications

The review concentrates on wheeled robots, excluding walking ones. Future work should improve consumption models, explore optimization methods, examine artificial intelligence/machine learning roles and assess energy efficiency trade-offs.

Originality/value

This paper provides a comprehensive analysis of energy efficiency in AMRs, highlighting the key findings from the SLR and suggests future research directions for further advancements in this field.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. 36 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 16 October 2023

Peng Wang and Renquan Dong

To improve the position tracking efficiency of the upper-limb rehabilitation robot for stroke hemiplegia patients, the optimization Learning rate of the membership function based…

Abstract

Purpose

To improve the position tracking efficiency of the upper-limb rehabilitation robot for stroke hemiplegia patients, the optimization Learning rate of the membership function based on the fuzzy impedance controller of the rehabilitation robot is propose.

Design/methodology/approach

First, the impaired limb’s damping and stiffness parameters for evaluating its physical recovery condition are online estimated by using weighted least squares method based on recursive algorithm. Second, the fuzzy impedance control with the rule has been designed with the optimal impedance parameters. Finally, the membership function learning rate online optimization strategy based on Takagi-Sugeno (TS) fuzzy impedance model was proposed to improve the position tracking speed of fuzzy impedance control.

Findings

This method provides a solution for improving the membership function learning rate of the fuzzy impedance controller of the upper limb rehabilitation robot. Compared with traditional TS fuzzy impedance controller in position control, the improved TS fuzzy impedance controller has reduced the overshoot stability time by 0.025 s, and the position error caused by simulating the thrust interference of the impaired limb has been reduced by 8.4%. This fact is verified by simulation and test.

Originality/value

The TS fuzzy impedance controller based on membership function online optimization learning strategy can effectively optimize control parameters and improve the position tracking speed of upper limb rehabilitation robots. This controller improves the auxiliary rehabilitation efficiency of the upper limb rehabilitation robot and ensures the stability of auxiliary rehabilitation training.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 March 2024

Zhuoer Yao, Zi Kan, Daochun Li, Haoyuan Shao and Jinwu Xiang

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal…

Abstract

Purpose

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal sliding mode control (GFTSMC) method is proposed for automatic carrier landing system (ACLS) to achieve safe carrier landing control.

Design/methodology/approach

First, the framework of ACLS is established, which includes flight glide path model, guidance model, approach power compensation system and flight controller model. Subsequently, the carrier deck motion model and carrier air-wake model are presented to simulate the environmental disturbances. Then, the detailed design steps of GFTSMC are provided. The stability analysis of the controller is proved by Lyapunov theorems and LaSalle’s invariance principle. Furthermore, the arrival time analysis is carried out, which proves the controller has fixed time convergence ability.

Findings

The numerical simulations are conducted. The simulation results reveal that the proposed method can guarantee a finite convergence time and safe carrier landing under various conditions. And the superiority of the proposed method is further demonstrated by comparative simulations and Monte Carlo tests.

Originality/value

The GFTSMC method proposed in this paper can achieve precise and safe carrier landing with environmental disturbances, which has important referential significance to the improvement of ACLS controller designs.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 March 2024

Tugrul Oktay and Yüksel Eraslan

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design conducted with optimization, computational fluid dynamics (CFD) and machine learning approaches.

Design/methodology/approach

The main wing of the UAV is redesigned with morphing wingtips capable of dihedral angle alteration by means of folding. Aircraft dynamic model is derived as equations depending only on wingtip dihedral angle via Nonlinear Least Squares regression machine learning algorithm. Data for the regression analyses are obtained by numerical (i.e. CFD) and analytical approaches. Simultaneous perturbation stochastic approximation (SPSA) is incorporated into the design process to determine the optimal wingtip dihedral angle and proportional-integral-derivative (PID) coefficients of the control system that maximizes autonomous flight performance. The performance is defined in terms of trajectory tracking quality parameters of rise time, settling time and overshoot. Obtained optimal design parameters are applied in flight simulations to test both longitudinal and lateral reference trajectory tracking.

Findings

Longitudinal and lateral autonomous flight performances of the UAV are improved by redesigning the main wing with morphing wingtips and simultaneous estimation of PID coefficients and wingtip dihedral angle with SPSA optimization.

Originality/value

This paper originally discusses the simultaneous design of innovative morphing wingtip and UAV flight control system for autonomous flight performance improvement. The proposed simultaneous design idea is conducted with the SPSA optimization and a machine learning algorithm as a novel approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 November 2023

Sezer Çoban

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain…

Abstract

Purpose

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain parameters (i.e. wing taper ratio and wing aspect ratio) while there are lower and upper constraints on these redesign parameters.

Design/methodology/approach

A mini UAV is produced in the Iskenderun Technical University (ISTE) Unmanned Aerial Vehicle Laboratory. Its complete wing can vary passively before the flight with respect to the result of the stochastic redesign of the wing while maximizing autonomous flight performance. Flight control system (FCS) parameters (i.e. gains of longitudinal and lateral proportional-integral-derivative controllers) and wing redesign parameters mentioned before are simultaneously designed to maximize autonomous flight performance index using a certain stochastic optimization strategy named as simultaneous perturbation stochastic approximation (SPSA). Found results are used while composing UAV flight simulations.

Findings

Using stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV over previously mentioned wing parameters and FCS, it obtained a maximum UAV autonomous flight performance.

Research limitations/implications

Permission of the directorate general of civil aviation in the Republic of Türkiye is essential for real-time UAV autonomous flights.

Practical implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach is very useful for improving any mini UAV autonomous flight performance cost index.

Social implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach succeeds confidence, highly improved autonomous flight performance cost index and easy service demands of mini UAV operators.

Originality/value

Creating a new approach to recover autonomous flight performance cost index (e.g. satisfying less settling time and less rise time, less overshoot during flight trajectory tracking) of a mini UAV and composing a novel procedure performing simultaneous mini UAV having passively morphing wing over certain parameters while there are upper and lower constraints and FCS design idea.

Article
Publication date: 10 January 2024

Xin Cai, Xiaozhou Zhu and Wen Yao

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and…

Abstract

Purpose

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and parameter uncertainties, it is difficult to control the unmanned aerial vehicle (UAV) to achieve high-precision tracking performance. This paper aims to design a safety controller that uses observer and neural network method to improve the tracking performance of UAV under multiple disturbances. The experiments prove that this method is effective.

Design/methodology/approach

First, to actively estimate and compensate the synthetic uncertainties of the system, a finite-time extended state observer is investigated, and the disturbances are transformed into the extended state of the system for estimation. Second, an adaptive neural network controller that does not accurately require the dynamic model knowledge is designed based on the estimated value, where the weights of the neural network can be dynamically adjusted by the adaptive law. Furthermore, the finite-time bounded convergence of the proposed observer and the stability of the system are proved through homogeneous theory and Lyapunov method.

Findings

The figure-“8” climbing flight simulation and real flight experiments illustrate that the proposed safety control strategy has good tracking performance.

Originality/value

This paper proposes the safety control structure of the UAV, which combines the extended state observer with the neural network method. Numerical simulation results and actual flight experiments demonstrate the effectiveness of the proposed control strategy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Access

Year

Last 6 months (37)

Content type

Article (37)
1 – 10 of 37