Search results

1 – 3 of 3
Article
Publication date: 4 October 2011

Emadaldin Hezavehi, Saeed Shaikhzadeh Najar, P. Zolgharnein and Hamed Yahya

The purpose of this paper is to analyze the stress‐relaxation behavior of different woven fabrics under constant torsional strain in a wrinkled state. For this purpose, a new…

Abstract

Purpose

The purpose of this paper is to analyze the stress‐relaxation behavior of different woven fabrics under constant torsional strain in a wrinkled state. For this purpose, a new method for determination of stress‐relaxation behavior of the fabric was used while keeping the torsional strain constant.

Design/methodology/approach

In this study, the behavior of stress relaxation of fabric is examined with modification of wrinkle force tester sophisticated electro‐mechanical method and fabricating a device which uses a computer and micro controller, with constant torsional strain by a rotational level of 9.1 turn/m in 280°, and in 300 s.

Findings

The results depict that stress‐relaxation percentage in fabric in weft alignment is more than warp alignment and the fabrics which tolerate more torsional force, possess less stress‐relaxation percentages. In this way, with increasing polyester percentage in fabric the scale of stress‐relaxation percentage decreases. Also, adoption of data derived from experiments with Maxwell model shows that the interlaced model is a suitable model for explaining the stress relaxation decline in fabric. Correlation coefficient of fabrics in weft alignment with Maxwell model is more than warp alignment.

Practical implications

This study has practical implications in the clothing as well as in technical textiles areas.

Originality/value

Knowing visco‐elastic properties is very important. However, there is no information available to study the stress relaxation of woven fabrics under the combined influences of compression and constant torsional strains.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 February 2021

Seyedeh Maryam Mousavi, Bita Archangi, Hosein Zolgharnein and Isaac Zamani

The purpose of this paper was to identify Serratia marcescens to extract and purify prodigiosin pigment to evaluate the antibacterial potential of the pigment.

Abstract

Purpose

The purpose of this paper was to identify Serratia marcescens to extract and purify prodigiosin pigment to evaluate the antibacterial potential of the pigment.

Design/methodology/approach

Samples were collected from shrimp aquaculture ponds. Species identification was conducted using morphological, biochemical and molecular tests. Pigment extraction and purification were carried out using column chromatography. The antibacterial effect of crude and purified prodigiosin pigment was evaluated on Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus as biofouling bacteria. In addition, the interaction between prodigiosin and proteins involved in biofilm formation was evaluated using molecular docking.

Findings

The results of prodigiosin extraction with solvents showed the highest percentage of pigment presence with methanol solvent in the second day of culture. The chemical structure of pure prodigiosin obtained from the column chromatography was confirmed by Fourier-transform infrared spectroscopy. Both crude and purified pigments exhibited antibacterial effects against selected bacterial strains. The antibacterial effect of the purified pigment was higher, and the highest antibacterial effect was observed on B. subtilis. Prodigiosin docking was carried out with all target proteins, and the docked energy in all of them was at an acceptable level.

Originality/value

Prodigiosin extracted from S. marcescens can be used as a bioactive compound to design and manufacture of anti-biofouling and anti-biofilm formation products to use extensively for industrial applications as a natural color in marine industries, food industry, cosmetics and textile productions.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 August 2018

A. Shams Nateri, Sheida Zandi, Vahid Motaghitalab and Negin Piri

This paper aims to investigate the effect of titanium dioxide (TiO2) nanoparticle coating on the visible reflectance and color appearance of dyed cotton fabrics.

Abstract

Purpose

This paper aims to investigate the effect of titanium dioxide (TiO2) nanoparticle coating on the visible reflectance and color appearance of dyed cotton fabrics.

Design/methodology/approach

A Taguchi experimental design model was used to minimize the number of samples and for accurate prediction of possible responses. The governing parameters affecting the color change of dyed fabrics through the coating process were selected as shade of cotton fabrics, depth of shade, concentration and size of TiO2 nanoparticles and concentration of citric acid. The Taguchi model suggests the L18 orthogonal array. In the meantime, the lower response category was selected to determine the optimum conditions. According to obtained results, coating with TiO2 nanoparticles results in color change (ΔEab*) of all dyed cotton fabrics.

Findings

The obtained results indicate that the TiO2-coated fabrics had higher reflectance compared to raw fabrics. Furthermore, it was found that the TiO2 pigmented coating increases the brightness of samples and simultaneously decreases their chroma. On the other hand, analysis of variance reveals that the concentration of TiO2 nanoparticles together with shade of fabrics has the most significant impact on the color change of dyed fabrics through coating process. Dye concentration and size of TiO2 particles also, to the same extent, had influence over the color change. However, the effect of the concentration of citric acid on the color change was insignificant.

Originality/value

This research investigates the effect of TiO2 nanoparticles on the optical property of colored fabric by using a Taguchi experimental design model to minimize the number of samples.

Details

Pigment & Resin Technology, vol. 47 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 3 of 3