Search results

1 – 3 of 3
Article
Publication date: 13 September 2011

P. Turewicz, E. Baake and A. Umbrashko

The purpose of this paper is to describe how electromagnetic stirring during continuous casting of ferrous and non‐ferrous metals is applied in order to increase the homogeneity…

Abstract

Purpose

The purpose of this paper is to describe how electromagnetic stirring during continuous casting of ferrous and non‐ferrous metals is applied in order to increase the homogeneity and the material properties by improving the grain refinement in the solidification process. The fluid flow and thermal modeling was performed for studying the metal wire pulling process, where melt is being stirred at the solidification front (SF) by electromagnetic forces. Transient simulation has been carried out in order to investigate the periodical character of the process.

Design/methodology/approach

The numerical analysis was performed in 2D utilizing the rotational symmetry of the problem. First the electromagnetic fields were estimated using FEM and were subsequently exported as source terms in a coupled thermal and flow simulation with FVM.

Findings

The presented numerical model estimated the most suitable position between the stirring coil and the SF to achieve high flow velocities which improve the grain refinement process.

Originality/value

This work enables estimation of the melt solidification in an electromagnetic stirred continuous casting process with oscillating pull velocities.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Ambrish Maurya and Pradeep Kumar Jha

The purpose of present investigation is to analyze the in-mold electromagnetic stirring (M-EMS) process and the effect of stirrer frequency on fluid flow and solidification in a…

Abstract

Purpose

The purpose of present investigation is to analyze the in-mold electromagnetic stirring (M-EMS) process and the effect of stirrer frequency on fluid flow and solidification in a continuous casting billet caster mold.

Design/methodology/approach

A hybrid approach involving finite element and finite volume method has been used for the study. Finite element model is used to calculate time variable magnetic field, which is further coupled with fluid flow and solidification equations for magneto-hydrodynamic analysis with finite volume model.

Findings

Results show that though superheat given to steel before its entry into the mold is quickly removed, solid shell formation is delayed by the use of M-EMS. Final solid shell thickness, however, is slightly reduced. Increase in frequency is found to increase the magnetic flux density and tangential velocity of liquid steel and decrease in diameter of liquid core.

Practical implications

The work is of great industrial relevance. The model may be used to design industrial setup of in-mold electromagnetic stirrer and process could be analyzed and optimized numerically.

Originality/value

The paper evaluates the influence of M-EMS and its frequency on solidification and flow behavior in the continuous casting mold. The iso-surface temperatures from pouring temperature to liquidus temperature inside the mold have been shown. The findings may be useful for the steelmakers to reduce the defect in continuous casting.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 September 2018

Ambrish Maurya and Pradeep Kumar Jha

This investigation aims to analyze the steel-flux interface level fluctuation because of electromagnetic stirring and its process parameters in a continuous casting billet mold.

Abstract

Purpose

This investigation aims to analyze the steel-flux interface level fluctuation because of electromagnetic stirring and its process parameters in a continuous casting billet mold.

Design/methodology/approach

An un-coupled numerical model for electromagnetic field generation and a coupled numerical model of electromagnetic field and two-phase fluid flow have been developed. The two-phase fluid flow has been modeled using volume of fluid method, in which externally generated time-varying electromagnetic field is coupled and analyzed using magnetohydrodynamic method. Top surface standing wave stability criteria are used to study the criticality of interface stability.

Findings

Results show that application electromagnetic field for stirring increases the interface level fluctuation, specifically at the mold corners and near the submerged entry nozzle. The increase in current intensity and stirrer width barely affect the interface level. However, interface level fluctuation increases considerably with increase in frequency. Using stability criteria, it is found that at 20 Hz frequency, the ratio of height to wavelength of interface wave increases much above the critical value. The iso-surface of the interface level shows that at 20 Hz frequency, mold flux gets entrapped into the liquid steel.

Practical implications

The model may be used during optimization of in-mold electromagnetic stirrer to avoid mold flux entrapment and control the cast quality.

Originality/value

The study of mold level fluctuation in the presence of in-mold electromagnetic stirrer has rarely been reported. The criticality of stirrer process parameters on level fluctuation has not been yet reported. This study lacks in experimental validation; however, the findings will be much useful for the steelmakers to reduce the casting defects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3