Search results

1 – 2 of 2
Open Access
Article
Publication date: 7 September 2015

Hubert Zangl and Stephan Mühlbacher-Karrer

The purpose of this paper is to reduce the artifacts in fast Bayesian reconstruction images in electrical tomography. This is in particular important with respect to object…

1054

Abstract

Purpose

The purpose of this paper is to reduce the artifacts in fast Bayesian reconstruction images in electrical tomography. This is in particular important with respect to object detection in electrical tomography applications.

Design/methodology/approach

The authors suggest to apply the Box-Cox transformation in Bayesian linear minimum mean square error (BMMSE) reconstruction to better accommodate the non-linear relation between the capacitance matrix and the permittivity distribution. The authors compare the results of the original algorithm with the modified algorithm and with the ground truth in both, simulation and experiments.

Findings

The results show a reduction of 50 percent of the mean square error caused by artifacts in low permittivity regions. Furthermore, the algorithm does not increase the computational complexity significantly such that the hard real time constraints can still be met. The authors demonstrate that the algorithm also works with limited observations angles. This allows for object detection in real time, e.g., in robot collision avoidance.

Originality/value

This paper shows that the extension of BMMSE by applying the Box-Cox transformation leads to a significant improvement of the quality of the reconstruction image while hard real time constraints are still met.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 25 July 2019

Juliana Padilha Leitzke and Hubert Zangl

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such…

935

Abstract

Purpose

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such as autarkic wireless sensors, which require a low computational complexity reconstruction approach and a low number of electrodes. This paper also investigates how the electrode design can affect the reconstruction results in tomography.

Design/methodology/approach

EITS is performed by using a non-iterative method called optimal first order approximation. In addition to that, a planar electrode geometry is used instead of the traditional circular electrode geometry. Such a structure allows the system to identify materials placed on the region above the sensor, which do not need to be confined in a pipe. For the optimization, the mean squared error (MSE) between the reference images and the obtained reconstructed images was calculated.

Findings

The authors demonstrate that even with a low number of four electrodes and a low complexity reconstruction algorithm, a reasonable reconstruction of water and ice fractions is possible. Furthermore, it is shown that an optimal distribution of the sensor electrodes can help to reduce the MSE without any costs in terms of computational complexity or power consumption.

Originality/value

This paper shows through simulations that the reconstruction of ice and water mixtures is possible and that the electrode design is a topic of great importance, as they can significantly affect the reconstruction results.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Access

Only content I have access to

Year

Content type

1 – 2 of 2