Search results

1 – 3 of 3
Article
Publication date: 16 August 2024

M. Alosaimi and D. Lesnic

In order to include the non-negligible lag relaxation time feature that is characteristic of heat transfer in biological bodies, the classical Fourier's law of heat conduction has…

Abstract

Purpose

In order to include the non-negligible lag relaxation time feature that is characteristic of heat transfer in biological bodies, the classical Fourier's law of heat conduction has to be generalized as the Maxwell–Cattaneo law resulting in the thermal-wave model of bio-heat transfer. The purpose of the paper is to retrieve the unknown time-dependent blood perfusion coefficient in such a thermal-wave model of bio-heat transfer from (non-intrusive) measurements of the temperature on an accessible sub-portion of the boundary that may be taken with an infrared scanner.

Design/methodology/approach

The nonlinear and ill-posed problem is reformulated as a nonlinear minimization problem of a Tikhonov regularization functional subject to lower and upper simple bounds on the unknown coefficient. For the numerical discretization, an unconditionally stable direct solver based on the Crank–Nicolson finite-difference scheme is developed. The Tikhonov regularization functional is minimized iteratively by the built-in routine lsqnonlin from the MATLAB optimization toolbox. Numerical results for a benchmark test example are presented and thoroughly discussed, shedding light on the performance and effectiveness of the proposed methodology.

Findings

The inverse problem of obtaining the time-dependent blood perfusion coefficient and the temperature in the thermal-wave model of bio-heat transfer from extra boundary temperature measurement has been solved. In particular, the uniqueness of the solution to this inverse problem has been established. Furthermore, our proposed computational method demonstrated successful attainment of the perfusion coefficient and temperature, even when dealing with noisy data.

Originality/value

The originalities of the present paper are to account for such a more representative thermal-wave model of heat transfer in biological bodies and to investigate the possibility of determining its time-dependent blood perfusion coefficient from non-intrusive boundary temperature measurements.

Details

Engineering Computations, vol. 41 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 April 2020

Moataz Alosaimi, Daniel Lesnic and Jitse Niesen

This study aims to at numerically retrieve five constant dimensional thermo-physical properties of a biological tissue from dimensionless boundary temperature measurements.

Abstract

Purpose

This study aims to at numerically retrieve five constant dimensional thermo-physical properties of a biological tissue from dimensionless boundary temperature measurements.

Design/methodology/approach

The thermal-wave model of bio-heat transfer is used as an appropriate model because of its realism in situations in which the heat flux is extremely high or low and imposed over a short duration of time. For the numerical discretization, an unconditionally stable finite difference scheme used as a direct solver is developed. The sensitivity coefficients of the dimensionless boundary temperature measurements with respect to five constant dimensionless parameters appearing in a non-dimensionalised version of the governing hyperbolic model are computed. The retrieval of those dimensionless parameters, from both exact and noisy measurements, is successfully achieved by using a minimization procedure based on the MATLAB optimization toolbox routine lsqnonlin. The values of the five-dimensional parameters are recovered by inverting a nonlinear system of algebraic equations connecting those parameters to the dimensionless parameters whose values have already been recovered.

Findings

Accurate and stable numerical solutions for the unknown thermo-physical properties of a biological tissue from dimensionless boundary temperature measurements are obtained using the proposed numerical procedure.

Research limitations/implications

The current investigation is limited to the retrieval of constant physical properties, but future work will investigate the reconstruction of the space-dependent blood perfusion coefficient.

Practical implications

As noise inherently present in practical measurements is inverted, the paper is of practical significance and models a real-world situation.

Social implications

The findings of the present paper are of considerable significance and interest to practitioners in the biomedical engineering and medical physics sectors.

Originality/value

In comparison to Alkhwaji et al. (2012), the novelty and contribution of this work are as follows: considering the more general and realistic thermal-wave model of bio-heat transfer, accounting for a relaxation time; allowing for the tissue to have a finite size; and reconstructing five thermally significant dimensional parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2023

M.A. Alosaimi and D. Lesnic

When modeling heat propagation in biological bodies, a non-negligible relaxation time (typically between 15-30 s) is required for the thermal waves to accumulate and transfer…

Abstract

Purpose

When modeling heat propagation in biological bodies, a non-negligible relaxation time (typically between 15-30 s) is required for the thermal waves to accumulate and transfer, i.e. thermal waves propagate at a finite velocity. To accommodate for this feature that is characteristic to heat transfer in biological bodies, the classical Fourier's law has to be modified resulting in the thermal-wave model of bio-heat transfer. The purpose of the paper is to retrieve the space-dependent blood perfusion coefficient in such a thermal-wave model of bio-heat transfer from final time temperature measurements.

Design/methodology/approach

The non-linear and ill-posed blood perfusion coefficient identification problem is reformulated as a non-linear minimization problem of a Tikhonov regularization functional subject to lower and upper simple bounds on the unknown coefficient. For the numerical discretization, an unconditionally stable direct solver based on the Crank–Nicolson finite difference scheme is developed. The Tikhonov regularization functional is minimized iteratively by the built-in routine lsqnonlin from the MATLAB optimization toolbox. Both exact and numerically simulated noisy input data are inverted.

Findings

The reconstruction of the unknown blood perfusion coefficient for three benchmark numerical examples is illustrated and discussed to verify the proposed numerical procedure. Moreover, the proposed algorithm is tested on a physical example which consists of identifying the blood perfusion rate of a biological tissue subjected to an external source of laser irradiation. The numerical results demonstrate that accurate and stable solutions are obtained.

Originality/value

Although previous studies estimated the important thermo-physical blood perfusion coefficient, they neglected the wave-like nature of heat conduction present in biological tissues that are captured by the more accurate thermal-wave model of bio-heat transfer. The originalities of the present paper are to account for such a more accurate thermal-wave bio-heat model and to investigate the possibility of determining its space-dependent blood perfusion coefficient from temperature measurements at the final time.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 3 of 3