Search results

1 – 2 of 2
Article
Publication date: 3 March 2020

Michal Kulak, Michal Lipian and Karol Zawadzki

This paper aims to discuss the results of the performance study of wind turbine blades equipped with winglets. An investigation focusses on small wind turbines (SWTs), where the…

223

Abstract

Purpose

This paper aims to discuss the results of the performance study of wind turbine blades equipped with winglets. An investigation focusses on small wind turbines (SWTs), where the winglets are recalled as one of the most promising concepts in terms of turbine efficiency increase.

Design/methodology/approach

To investigate a contribution of winglets to SWT aerodynamic efficiency, a wind tunnel experiment was performed at Lodz University of Technology. In parallel, computational fluid dynamics (CFD) simulations campaign was conducted with the ANSYS CFX software to investigate appearing flow structures in greater detail.

Findings

The research indicates the potential behind the application of winglets in low Reynolds flow conditions, while the CFD study enables the identification of crucial regions influencing the flow structure in the most significant degree.

Research limitations/implications

As the global effect on a whole rotor is a result of a small-scale geometrical feature, it is important to localise unveiled phenomena and the mechanisms behind their generation.

Practical implications

Even the slightest efficiency improvement in a distributed generation installation can promote such a solution amongst energy prosumers and increase their independence from limited natural resources.

Originality/value

The winglet-equipped blades of SWTs provide an opportunity to increase the device performance with relatively low cost and ease of implementation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2016

Krzysztof Olasek, Maciej Karczewski, Michal Lipian, Piotr Wiklak and Krzysztof Józwik

A solution to increase the energy production rate of the wind turbine is proposed by forcing more air to move through the turbine working section. This can be achieved by…

Abstract

Purpose

A solution to increase the energy production rate of the wind turbine is proposed by forcing more air to move through the turbine working section. This can be achieved by equipping the rotor with a diffusing channel ended with a brim (diffuser augmented wind turbine – DAWT). The purpose of this paper is to design an experimental stand and perform the measurements of velocity vector fields through the diffuser and power characteristic of the wind turbine.

Design/methodology/approach

The experiments were carried out in a small subsonic wind tunnel at the Institute of Turbomachinery, Lodz University of Technology. An experimental stand design process as well as measurement results are presented. Model size sensitivity study was performed at the beginning. The experimental campaign consisted of velocity measurements by means of particle image velocimetry (PIV) and pneumatic pitot probe as well as torque and rotational velocity measurements.

Findings

Characteristics (power coefficient vs tip speed ratio) of the bare and shrouded wind turbine were obtained. The results show an increase in the wind turbine power up to 70-75 per cent by shrouding the rotor with a diffuser. The mechanisms responsible for such a power increase were well explained by the PIV and pneumatic measurement results revealing the nature of the flow through the diffuser.

Research limitations/implications

Experimental stand for wind turbine rotor testing is of a preliminary character. Most optimal methodology for obtaining power characteristic should be determined now. Presented results can serve as good input for choice of stable and reliable control system of wind turbine operational parameters.

Practical implications

A 3 kW DAWT is being developed at the Institute of Turbomachinery, Lodz University of Technology. Aim of the study is to design a compact and smart wind turbine optimised for low wind speed conditions. Developed wind turbine has a potential to be used as an effective element within a net of distributed generation, e.g. for domestic use.

Originality/value

Research carried out is the continuation of theoretical study began in 1970s. It was also inspired by practical solutions proposed by Japanese researchers few years ago. Presented paper is the summary of work devoted to optimisation of the DAWT for wind conditions in the region. Original solution has been applied, e.g. for experimental stand design (3D printing application).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2