Search results

1 – 2 of 2
Article
Publication date: 25 August 2023

Xin Zhou, Wenbin Zhou, Yang Zheng Zhang, Meng-Ran Li, Haijing Sun and Jie Sun

This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.

Abstract

Purpose

This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.

Design/methodology/approach

The authors performed weight loss experiments, electrochemical experiments including the polarization curve and electrochemical impedance spectrum, corrosion morphology observation using scanning electron microscope (SEM) and atomic force microscope (AFM) and surface composition analysis via X-ray photoelectron spectroscopy (XPS) to analyze the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass by using quantum chemical calculation (Gaussian 09), molecular dynamics simulation (M-S) and Langmuir adsorption isotherm.

Findings

According to the results, imidazole-pyridine and its derivatives were found to be modest or moderately mixed corrosion inhibitors; moreover, they were spontaneously adsorbed on the metal surface in a single-layer, mixed adsorption mode.

Originality/value

The corrosion inhibition properties of pyrazolo-[1,2-a]pyridine and its derivatives on brass in sulfuric acid solution were analyzed through weight loss and electrochemical experiments. Moreover, SEM and AFM were simultaneously used to observe the corrosion appearance. Furthermore, XPS was used to analyze the surface. Then, Gaussian 09 and M-S were combined along with the Langmuir adsorption isotherm to investigate the corrosion inhibition mechanism of imidazole-[1,2-a]pyridine and its derivatives.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 July 2019

Meng-Ran Liao, Tang Chen and Wei-Jian Lv

In this study, the authors performed a numerical investigation on the heating of a hot cathode with a conical tip by atmospheric arc, taking into account of the two temperature…

Abstract

Purpose

In this study, the authors performed a numerical investigation on the heating of a hot cathode with a conical tip by atmospheric arc, taking into account of the two temperature sheath effect for the first time.

Design/methodology/approach

The Schottky effect at cathode surface is considered, which is based on the analytic solution of a one-dimensional sheath model. The unified model allows one to predict the cathode-plasma heat transfer.

Findings

The total heat flux to cathode surface is smaller than its components’ heat flux due to electron back diffusion is as large as that due to ion flux with the increase of cathode length the total heat transported to the cathode body has an obvious decrease.

Originality/value

It is found that two kinds of solution exist for the cathode with a 140° conical tip; however, only one stable solution exists when the conical angle is reduced to 130°.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2