Search results

1 – 3 of 3
Article
Publication date: 28 November 2018

Mojtaba Moshiri and Mehrdad T. Manzari

This paper aims to numerically study the compositional flow of two- and three-phase fluids in one-dimensional porous media and to make a comparison between several upwind and…

Abstract

Purpose

This paper aims to numerically study the compositional flow of two- and three-phase fluids in one-dimensional porous media and to make a comparison between several upwind and central numerical schemes.

Design/methodology/approach

Implicit pressure explicit composition (IMPEC) procedure is used for discretization of governing equations. The pressure equation is solved implicitly, whereas the mass conservation equations are solved explicitly using different upwind (UPW) and central (CEN) numerical schemes. These include classical upwind (UPW-CLS), flux-based decomposition upwind (UPW-FLX), variable-based decomposition upwind (UPW-VAR), Roe’s upwind (UPW-ROE), local Lax–Friedrichs (CEN-LLF), dominant wave (CEN-DW), Harten–Lax–van Leer (HLL) and newly proposed modified dominant wave (CEN-MDW) schemes. To achieve higher resolution, high-order data generated by either monotone upstream-centered schemes for conservation laws (MUSCL) or weighted essentially non-oscillatory (WENO) reconstructions are used.

Findings

It was found that the new CEN-MDW scheme can accurately solve multiphase compositional flow equations. This scheme uses most of the information in flux function while it has a moderate computational cost as a consequence of using simple algebraic formula for the wave speed approximation. Moreover, numerically calculated wave structure is shown to be used as a tool for a priori estimation of problematic regions, i.e. degenerate, umbilic and elliptic points, which require applying correction procedures to produce physically acceptable (entropy) solutions.

Research limitations/implications

This paper is concerned with one-dimensional study of compositional two- and three-phase flows in porous media. Temperature is assumed constant and the physical model accounts for miscibility and compressibility of fluids, whereas gravity and capillary effects are neglected.

Practical implications

The proposed numerical scheme can be efficiently used for solving two- and three-phase compositional flows in porous media with a low computational cost which is especially useful when the number of chemical species increases.

Originality/value

A new central scheme is proposed that leads to improved accuracy and computational efficiency. Moreover, to the best of authors knowledge, this is the first time that the wave structure of compositional model is investigated numerically to determine the problematic situations during numerical solution and adopt appropriate correction techniques.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1998

Mehrdad T. Manzari and Majid T. Manzari

Using a non‐Fourier heat conduction (NFHC) hypothesis, the governing equations of thermal wave propagation are established. The resulting differential equations are transformed to…

Abstract

Using a non‐Fourier heat conduction (NFHC) hypothesis, the governing equations of thermal wave propagation are established. The resulting differential equations are transformed to integral forms using the Galerkin weighted residual method and then are discretized by a finite element technique. The proposed finite element formulation is verified by comparing the results of analytical and numerical solutions to a number of selected 1‐D problems. A couple of 2‐D sample problems are solved and the responses of the system to various input signals are studied. The proposed mixed approach shows superiority to the conventional finite element solution of hyperbolic heat conduction equation, because of the simultaneous determination of heat fluxes and temperature at each nodal point. The mixed approach is also shown to be capable of capturing the sudden temperature jump due to heat pulses.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2014

Mehdi Mosharaf Dehkordi, Mehrdad T. Manzari, H. Ghafouri and R. Fatehi

– The purpose of this paper is to present a detailed algorithm for simulating three-dimensional hydrocarbon reservoirs using the blackoil model.

Abstract

Purpose

The purpose of this paper is to present a detailed algorithm for simulating three-dimensional hydrocarbon reservoirs using the blackoil model.

Design/methodology/approach

The numerical algorithm uses a cell-centred structured grid finite volume method. The blackoil formulation is written in a way that an Implicit Pressure Explicit Saturation approach can be used. The flow field is obtained by solving a general gas pressure equation derived by manipulating the governing equations. All possible variations of the pressure equation coefficients are given for different reservoir conditions. Key computational details including treatment of non-linear terms, expansion of accumulation terms, transitions from under-saturated to saturated states and vice versa, high gas injection rates, evolution of gas in the oil production wells and adaptive time-stepping procedures are elaborated.

Findings

It was shown that using a proper linearization method, less computational difficulties occur especially when free gas is released with high rates. The computational performance of the proposed algorithm is assessed by solving the first SPE comparative study problem with both constant and variable bubble point conditions.

Research limitations/implications

While discretization is performed and implemented for unstructured grids, the numerical results are presented only for structured grids, as expected, the accuracy of numerical results are best for structured grids. Also, the reservoir is assumed to be non-fractured.

Practical implications

The proposed algorithm can be efficiently used for simulating a wide range of practical problems wherever blackoil model is applicable.

Originality/value

A complete and detailed description of ingredients of an efficient finite volume-based algorithm for simulating blackoil flows in hydrocarbon reservoirs is presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

All dates (3)

Content type

1 – 3 of 3