Search results

1 – 10 of 83
Article
Publication date: 14 August 2024

Weizheng Zhang and Dongmin Han

The purpose of this study is to investigate the sealing performance of different deep groove mechanical seals by considering the changing law of dynamic pressure effect and…

Abstract

Purpose

The purpose of this study is to investigate the sealing performance of different deep groove mechanical seals by considering the changing law of dynamic pressure effect and temperature gradient caused by high speed and high pressure.

Design/methodology/approach

A thermohydrodynamic lubrication model (THD) of the mechanical seal was constructed and solved using the commercial software FLUENT. The pressure and temperature distributions of the fluid under different groove types, as well as the sealing performance under different pressures, rotational speeds and sealing gaps, are obtained.

Findings

The annular groove (AG) can effectively reduce the temperature, and the T-type spiral groove (STG) can effectively inhibit the leakage. The increase of pressure and rotational speed leads to the enhancement of dynamic pressure effect and the increase of leakage, while the sealing gap increases and the leakage increases while taking away more heat. The choice of groove type is very important to the impact of sealing performance.

Originality/value

In consideration of the beneficial effect of deep grooves on cooling performance, the viscous temperature equation and the impact of the thermodynamic lubrication model are evaluated in conjunction with the sealing performance of four distinct groove types. This approach provides a theoretical basis for the optimal design of mechanical seals.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0184/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2024

Wei Chen, Hengjie Xu, Wenyuan Mao, Meihong Liu, Xuejian Sun and Qiangguo Deng

This study aims to investigate the influence mechanism of thermal-mechanical deformations on the CO2 mixture gases dry gas seal (DGS) flow field and compare the deformation…

Abstract

Purpose

This study aims to investigate the influence mechanism of thermal-mechanical deformations on the CO2 mixture gases dry gas seal (DGS) flow field and compare the deformation characteristics and sealing performance between two-way and one-way thermal-fluid-solid coupling models.

Design/methodology/approach

The authors established a two-way thermal-fluid-solid coupling model by using gas film thickness as the transfer parameter between the fluid and solid domain, and the model was solved using the finite difference method and finite element method. The thermal-mechanical deformations of the sealing rings, the influence of face deformation on the flow field and sealing performance were obtained.

Findings

Thermal-mechanical deformations cause a convergent gap between the two sealing end faces, resulting in an increase in the gas film thickness, but a decrease in the gas film temperature and sealing ring temperature. The axial relative deformations of rotating and stationary ring end faces caused by mechanical and thermal loads in the two-way coupling model are less than those in the one-way coupling (OWC) model, and the gas film thickness and leakage rate are larger than those in the OWC model, whereas the gas film stiffness is the opposite.

Originality/value

This paper provides a theoretical support and reference for the operational stability and structural optimization design of CO2 mixture gases DGS under high-pressure and high-speed operation conditions.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 May 2024

Zhenshun Li, Jiaqi Li, Ben An and Rui Li

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Abstract

Purpose

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Design/methodology/approach

Five machine learning algorithms, including K-nearest neighbor, random forest, support vector machine (SVM), gradient boosting decision tree (GBDT) and artificial neural network (ANN), are applied to predict friction coefficient of textured 45# steel surface under oil lubrication. The superiority of machine learning is verified by comparing it with analytical calculations and experimental results.

Findings

The results show that machine learning methods can accurately predict friction coefficient between interfaces compared to analytical calculations, in which SVM, GBDT and ANN methods show close prediction performance. When texture and working parameters both change, sliding speed plays the most important role, indicating that working parameters have more significant influence on friction coefficient than texture parameters.

Originality/value

This study can reduce the experimental cost and time of textured 45# steel, and provide a reference for the widespread application of machine learning in the friction field in the future.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2024

Yongsheng Zhao, Jiaqing Luo, Ying Li, Caixia Zhang and Honglie Ma

The combination of improved PSO (IPSO) algorithm and artificial neural network (ANN) model for intelligent monitoring of the bearing performance of the hydrostatic turntable.

Abstract

Purpose

The combination of improved PSO (IPSO) algorithm and artificial neural network (ANN) model for intelligent monitoring of the bearing performance of the hydrostatic turntable.

Design/methodology/approach

This paper proposes an artificial neural network model based on IPSO algorithm for intelligent monitoring of hydrostatic turntables.

Findings

The theoretical model proposed in this paper improves the accuracy of the working performance of the static pressure turntable and provides a new direction for intelligent monitoring of the static pressure turntable. Therefore, the theoretical research in this paper is novel.

Originality/value

Theoretical novelties: an ANN model based on the IPSO algorithm is designed to monitor the load-bearing performance of a static pressure turntable intelligently; this study show that the convergence accuracy and convergence speed of the IPSO-NN model have been improved by 52.55% and 10%, respectively, compared to traditional training models; and the proposed model could be used to solve the multidimensional nonlinear problem in the intelligent monitoring of hydrostatic turntables.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0081/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 September 2024

Kexin Ma, Jianxin Deng, Yichen Bao, Zhihui Zhang and Junyan Wang

Liquid-assisted laser surface texturing technology was used to create composite microtextures on triangular guide rail surfaces to enhance their tribological properties.

Abstract

Purpose

Liquid-assisted laser surface texturing technology was used to create composite microtextures on triangular guide rail surfaces to enhance their tribological properties.

Design/methodology/approach

Numerical simulations were used to investigate the impact of various microtextures on fluid dynamic lubrication. Reciprocating friction and wear tests, followed by mechanistic analysis, examined the combined tribological effects of microtextured surfaces and lubricants.

Findings

The numerical simulation outcomes reveal a significant augmentation in the influence of fluid dynamic pressure due to composite microtextures, consequently amplifying the load-bearing capacity of the oil film. The average friction coefficient of composite microtextured samples was approximately 0.136 in reciprocating pin-on-disk friction tests, representing approximately 17% decrease compared to polished samples. Triangular guide rails with composite microtextures demonstrated the lowest average coefficient under conditions of high-speed and heavy-loading in the reciprocating friction and wear tests. Additionally, the presence of composite microtextures was found to promote the formation of adsorbed and friction films during friction, potentially contributing to the enhancement of tribological properties.

Originality/value

Triangular guide rails face high friction and wear, limiting their stability in demanding applications like machine tool guideways. This paper proposes a novel approach for steel triangular guide rails, involving composite microtexturing, numerical fluid simulations, liquid-assisted laser surface texturing and friction-wear testing. By implementing composite microtextures, the method aims to reduce friction coefficients and extend guideway service life, thereby saving energy and reducing maintenance costs. Enhancing the antifriction and antiwear properties of machine tool guideways is crucial for improving performance and longevity.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0183/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 August 2024

Kiran Kunwar Chouhan and Santosh Chaudhary

This study investigates the behavior of viscous hybrid ferromagnetic fluids flowing through plain elastic sheets with the magnetic polarization effect. It examines flow in a…

13

Abstract

Purpose

This study investigates the behavior of viscous hybrid ferromagnetic fluids flowing through plain elastic sheets with the magnetic polarization effect. It examines flow in a porous medium using Stefan blowing and utilizes a versatile hybrid ferrofluid containing MnZnFe2O4 and Fe3O4 nanoparticles in the C2H2F4 base fluid, offering potential real-world applications. The study focuses on steady, laminar and viscous incompressible flow, analyzing heat and mass transfer aspects, including thermal radiation, Brownian motion, thermophoresis and viscous dissipation with convective boundary condition.

Design/methodology/approach

The governing expression of the flow model is addressed with pertinent non-dimensional transformations, and the finite element method solves the obtained system of ordinary differential equations.

Findings

The variations in fluid velocity, temperature and concentration profiles against all the physical parameters are analyzed through their graphical view. The association of these parameters with local surface friction coefficient, Nusselt number and Sherwood number is examined with the numerical data in a table.

Originality/value

This work extends previous research on ferrofluid flow, investigating unexplored parameters and offering valuable insights with potential engineering, industrial and medical implications. It introduces a novel approach that uses mathematical simplification techniques and the finite element method for the solution.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 July 2024

Xuan Zhang, Jin-Bo Jiang, Xudong Peng, Zhongjin Ni and Jun Pan

The purpose of this paper is to improve the seal performance by proper design of the cavity shape of the damping holes, especially the rotordynamics characteristics of the…

Abstract

Purpose

The purpose of this paper is to improve the seal performance by proper design of the cavity shape of the damping holes, especially the rotordynamics characteristics of the hole-pattern damped seal (HPDS).

Design/methodology/approach

A new damping seal structure that comprises a circle-shaped cavity and two directional leaf-shaped cavities with a dovetail-shaped diversion groove is proposed. The comparative study on the sealing characteristics of dovetail-shape, leaf-shape and classical circular HPDSs was carried out using ANSYS CFX.

Findings

The dovetail-shaped HPDS significantly outperformed two other damping seal designs in leakage and rotordynamic performance. At a rotating speed of 7,500 rpm, it showed a 25% reduction in leakage, a 23% increase in average effective damping and a 119% increase in average effective stiffness. The cross-coupled stiffness Kxy shifted from positive to negative, reducing circumferential flow. The dovetail's inclined leaf-shaped grooves create a double vortex that slows jet velocity in the seal clearance and alters spiral flow direction, resulting in a uniform pressure distribution and enhanced rotor stability at low frequencies.

Originality/value

This study proposes a novel HPDS with dovetail-shaped diversion grooves. The seal can realize the simultaneous improvement of rotordynamics and leakage characteristics compared to the current seal structure.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0127/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 May 2024

Muhammad Hakeem Mohammad Nazri, Tan Chou Yong, Farazila B. Yusof, Gregory Soon How Thien, Chan Kah Yoong and Yap Boon Kar

Die edge quality with its corresponding die strength are two important factors for excellent dicing quality especially for low-k wafers due to their weak mechanical properties and…

Abstract

Purpose

Die edge quality with its corresponding die strength are two important factors for excellent dicing quality especially for low-k wafers due to their weak mechanical properties and fragile structures. It is shown in past literatures that laser dicing or grooving does yield good dicing quality with the elimination of die mechanical properties. This is due to the excess heat energy that the die absorbs throughout the procedure. Within the internal structure, the mechanical properties of low-k wafers can be further enhanced by modification of the material. The purpose of this paper is to strengthen the mechanical properties of wafers through the heat-treatment process.

Design/methodology/approach

The methodology of this approach is by heat treating several low-k wafers that are scribed with different laser energy densities with different laser micromachining parameters, i.e. laser power, frequency, feed speed, defocus reading and single/multibeam setup. An Nd:YAG ultraviolet laser diode that is operating at 355 nm wavelength was used in this study. The die responses from each wafer are thoroughly visually inspected to identify any topside chipping and peeling. The laser grooving profile shape and deepest depth are analysed using a laser profiler, while the sidewalls are characterized by scanning electron microscopy (SEM) to detect cracks and voids. The mechanical strength of each wafer types then undergoes three-point bending test, and the performance data is analyzed using Weibull plot.

Findings

The result from the experiment shows that the standard wafers are most susceptible to physical defects as compared to the heat-treated wafers. There is improvement for heat-treated wafers in terms of die structural integrity and die strength performance, which revealed a 6% increase in single beam data group for wafers that is processed using high energy density laser output but remains the same for other laser grooving settings. Whereas for multibeam data group, all heat-treated wafer with different laser settings receives a slight increase at 4% in die strength.

Originality/value

Heat-treatment process can yield improved mechanical properties for laser grooved low-k wafers and thus provide better product reliability.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 April 2022

Zhimin Pan, Yu Yan, Yizhou Huang, Wei Jiang, Gao Cheng Ye and Hong Jun Li

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of…

Abstract

Purpose

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of artificial intelligent mobile equipment which auxiliary or even substitute human labor drive on the inner wall of the gas-insulated metal enclosed switchgear. The GIS equipment fault inspection and maintenance can be realized through the robot manipulator on the mobile platform and the camera carried on the fuselage, and it is a kind of intelligent equipment for operation. To realize the inspection and operation of the GIS equipment pipeline without blind spots, the robot is required to be able to travel on any wall inside the pipeline, especially the top of the pipeline and both right and left sides of the pipeline, which requires the flexible climbing of the GIS inspection robot. The robot device has a certain adsorption function to ensure that the robot is fully attached to the wall surface. At the same time, the robot manipulator can be used for collision-free obstacle avoidance operation planning in the narrow operation space inside the GIS equipment.

Design/methodology/approach

The above two technologies are the key that the robot completes the GIS equipment inspections. Based on this, this paper focuses on modeling and analysis of the chassis adsorption characteristics for the GIS inspection robot. At the same time, the Denavit Hartenberg (D-H) coordinate model of the robot arm system has been established, and the kinematics forward and inverse solutions of the robot manipulator system have been derived.

Findings

The reachable working space point cloud diagram of the robot manipulator in MATLAB has been obtained based on the kinematics analysis, and the operation trajectory planning of the robot manipulator using the robot toolbox has been obtained. The simulation results show that the robot manipulator system can realize the movement without collision and obstacle avoidance. The space can cover the entire GIS pipeline so as to achieve no blind area operation.

Originality/value

Finally, the GIS inspection robot physical prototype system has been developed through system integration design, and the inspection, maintenance operation experiment has been carried out in the actual GIS equipment. The entire robot system can complete the GIS equipment inspection operation soundly and improve the operation efficiency. The research in this paper has important theoretical significance and practical application value for the optimization design and practical research of the GIS inspection robot system.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 September 2024

Jian Hou, Chenyang Liu, Han Wang, Zilin Li, Guosheng Huang, Li Ma and Bo Jiang Ma

This paper aims to control the deformation of a thin wall CrZrCu cylinder components (wall thickness 5 mm, diameter 400 mm) during thermal spray alumina-titania (AT13) coating by…

Abstract

Purpose

This paper aims to control the deformation of a thin wall CrZrCu cylinder components (wall thickness 5 mm, diameter 400 mm) during thermal spray alumina-titania (AT13) coating by adjusting the spray parameters without deteriorating its quality evidently.

Design/methodology/approach

The deformation was controlled by lowering the temperature of the component in the way of adjusting the spray parameters. The main parameters adjust included extending the spraying distance, from normally 120 mm to 140 mm, decreasing plasma power from 50to 42 kW. An alumina-titanium (AT13) ceramic coating was chosen for protecting the substrate from corrosion. Microscopic morphology and phase analysis, insulation resistance testing, neutral salt test and electrochemical method were used to analyze the anti-corrosion and insulation performances of the coating.

Findings

The results indicate that, after adjusting the spraying parameters, the coating has a relatively high porosity, with an average value of 8.96 ± 0.77%. The bonding strength of the coating is relatively low, with an average value of 17.69 ± 0.85 MPa. However, after sealing, the polarization resistance of the coating in seawater can be maintained above 6.25 × 106 Ω.cm2 for an extended period. The coating has a high resistance (=1.1 M Ω), and there is no apparent galvanic corrosion when contacted with TC4 alloy. Additionally, analysis of corrosion products on the sample surface reveals that the samples with sprayed alumina-titanium ceramic show no copper corrosion products on the surface, and the coating remains intact, effectively isolating the corrosive medium.

Originality/value

By adjusting the spraying parameters, the deformation of the cylinder thin-walled component can be effectively controlled, making the φ 400 × 392 mm (thickness 5 mm) CrZrCu cylinder com-ponent with a maximum diameter deformation of only 0.14 mm. The satisfactory corrosion performances can be achieved under adjusting spraying parameters, which can guarantee the application of ceramic coating for weapon launching system of naval ships.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

All dates (83)

Content type

Earlycite article (83)
1 – 10 of 83