Search results

1 – 2 of 2
Article
Publication date: 5 June 2024

Maroua Ghali and Nizar Aifaoui

This study aims to develop an optimal tolerance allocation strategy involves integrating the unique transfer (UT) approach and the difficulty coefficient evaluation (DCE) routine…

Abstract

Purpose

This study aims to develop an optimal tolerance allocation strategy involves integrating the unique transfer (UT) approach and the difficulty coefficient evaluation (DCE) routine in an interactive hybrid method. This method combines the strengths of both UT and DCE, ensuring simultaneous utilization for enhanced performance. The proposed tolerancing model manifests an integrated computer-aided design (CAD) tool.

Design/methodology/approach

By combining UT and DCE based on failure mode, effects and criticality analysis (FMECA) tool and the Ishikawa diagram, the proposed collaborative hybrid tool ensures an efficient and optimal tolerance allocation approach. The integration of these methodologies not only addresses specific transfer challenges through UT but also conducts a thorough evaluation of difficulty coefficients via DCE routine using reliability analysis tools as FMECA tool and the Ishikawa diagram. This comprehensive framework contributes to a robust and informed decision-making process in tolerance allocation, ultimately optimizing the design and manufacturing processes.

Findings

The presented methodology is implemented with the aim of generating allocated tolerances that align with specific difficulty requirements, facilitating the creation of a mechanical assembly characterized by high quality and low cost. To substantiate and validate the conceptual framework and methods, an integrated tool has been developed, featuring a graphical user interface (GUI) designed in MATLAB. This interface serves as a platform to showcase various interactive and integrated tolerance allocation approaches that adhere to both functional and manufacturing prerequisites. The proposed integrated tool, designed with a GUI in MATLAB, offers the capability to execute various examples that effectively demonstrate the benefits of the developed tolerance transfer and allocation methodology.

Originality/value

The originality of the proposed approach is the twining between the UT and DCE simultaneous in an integrated and concurrent tolerance transfer and allocation model. Therefore, the proposed approach is named an integrated CAD/tolerance model based on the manufacturing difficulty tool. The obtained results underscore the tangible advantages stemming from the integration of this innovative tolerance transfer and allocation approach. These benefits include a notable reduction in total cost and a concurrent enhancement in product quality.

Details

Robotic Intelligence and Automation, vol. 44 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 19 October 2022

Maroua Ghali, Sami Elghali and Nizar Aifaoui

The purpose of this paper is to establish a tolerance optimization method based on manufacturing difficulty computation using the genetic algorithm (GA) method. This proposal is…

143

Abstract

Purpose

The purpose of this paper is to establish a tolerance optimization method based on manufacturing difficulty computation using the genetic algorithm (GA) method. This proposal is among the authors’ perspectives of accomplished previous research work to cooperative optimal tolerance allocation approach for concurrent engineering area.

Design/methodology/approach

This study introduces the proposed GA modeling. The objective function of the proposed GA is to minimize total cost constrained by the equation of functional requirements tolerances considering difficulty coefficients. The manufacturing difficulty computation is based on tools for the study and analysis of reliability of the design or the process, as the failure mode, effects and criticality analysis (FMECA) and Ishikawa diagram.

Findings

The proposed approach, based on difficulty coefficient computation and GA optimization method [genetic algorithm optimization using difficulty coefficient computation (GADCC)], has been applied to mechanical assembly taken from the literature and compared to previous methods regarding tolerance values and computed total cost. The total cost is the summation of manufacturing cost and quality loss. The proposed approach is economic and efficient that leads to facilitate the manufacturing of difficult dimensions by increasing their tolerances and reducing the rate of defect parts of the assembly.

Originality/value

The originality of this new optimal tolerance allocation method is to make a marriage between GA and manufacturing difficulty. The computation of part dimensions difficulty is based on incorporating FMECA tool and Ishikawa diagram This comparative study highlights the benefits of the proposed GADCC optimization method. The results lead to obtain optimal tolerances that minimize the total cost and respect the functional, quality and manufacturing requirements.

Details

Assembly Automation, vol. 42 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 2 of 2