Search results

1 – 2 of 2
Open Access
Article
Publication date: 22 March 2024

Sheak Salman, Shah Murtoza Morshed, Md. Rezaul Karim, Rafat Rahman, Sadia Hasanat and Afia Ahsan

The imperative to conserve resources and minimize operational expenses has spurred a notable increase in the adoption of lean manufacturing within the context of the circular…

Abstract

Purpose

The imperative to conserve resources and minimize operational expenses has spurred a notable increase in the adoption of lean manufacturing within the context of the circular economy across diverse industries in recent years. However, a notable gap exists in the research landscape, particularly concerning the implementation of lean practices within the pharmaceutical industry to enhance circular economy performance. Addressing this void, this study endeavors to identify and prioritize the pivotal drivers influencing lean manufacturing within the pharmaceutical sector.

Findings

The outcome of this rigorous examination highlights that “Continuous Monitoring Process for Sustainable Lean Implementation,” “Management Involvement for Sustainable Implementation” and “Training and Education” emerge as the most consequential drivers. These factors are deemed crucial for augmenting circular economy performance, underscoring the significance of management engagement, training initiatives and a continuous monitoring process in fostering a closed-loop practice within the pharmaceutical industry.

Research limitations/implications

The findings contribute valuable insights for decision-makers aiming to adopt lean practices within a circular economy framework. Specifically, by streamlining the process of developing a robust action plan tailored to the unique needs of the pharmaceutical sector, our study provides actionable guidance for enhancing overall sustainability in the manufacturing processes.

Originality/value

This study represents one of the initial efforts to systematically identify and assess the drivers to LM implementation within the pharmaceutical industry, contributing to the emerging body of knowledge in this area.

Details

International Journal of Industrial Engineering and Operations Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 21 June 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles D’Souza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs) under dry sliding condition by using a robust statistical method.

Design/methodology/approach

In this research, the epoxy/bamboo and epoxy/flax composites filled with 0–8 Wt.% TiO2 particles have been fabricated using simple hand layup techniques, and wear testing of the composite was done in accordance with the ASTM G99-05 standard. The Taguchi design of experiments (DOE) was used to conduct a statistical analysis of experimental wear results. An analysis of variance (ANOVA) was conducted to identify significant control factors affecting SWR under dry sliding conditions. Taguchi prediction model is also developed to verify the correlation between the test parameters and performance output.

Findings

The research study reveals that TiO2 filler particles in the epoxy/bamboo and epoxy/flax composite will improve the tribological properties of the developed composites. Statistical analysis of SWR concludes that normal load is the most influencing factor, followed by sliding distance, Wt.% TiO2 filler and sliding velocity. ANOVA concludes that normal load has the maximum effect of 31.92% and 35.77% and Wt.% of TiO2 filler has the effect of 17.33% and 16.98%, respectively, on the SWR of bamboo and flax FRCs. A fairly good agreement between the Taguchi predictive model and experimental results is obtained.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo/flax fibers to develop a novel hybrid composite material. TiO2 micro and nanoparticles are promising filler materials, it helps to enhance the mechanical and tribological properties of the epoxy composites. Taguchi DOE and ANOVA used for statistical analysis serve as guidelines for academicians and practitioners on how to best optimize the control variable with particular reference to natural FRCs.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2