Search results

1 – 2 of 2
Article
Publication date: 25 July 2024

Reza Masoumzadeh, Mostafa Abbaszadeh and Mehdi Dehghan

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Abstract

Purpose

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Design/methodology/approach

First, the derivative of the temporal direction is discretized by a second-order linearized finite difference scheme where it conserves the energy stability of the mathematical model. Then, the isogeometric collocation (IGC) method is used to approximate the derivative of spacial direction. The IGC procedure can be applied on irregular physical domains. The IGC method is constructed based upon the nonuniform rational B-splines (NURBS). Each curve and surface can be approximated by the NURBS. Also, a map will be defined to project the physical domain to a simple computational domain. In this procedure, the partial derivatives will be transformed to the new domain by the Jacobian and Hessian matrices. According to the mentioned procedure, the first- and second-order differential matrices are built. Furthermore, the pseudo-spectral algorithm is used to derive the first- and second-order nodal differential matrices. In the end, the Greville Abscissae points are used to the collocation method.

Findings

In the numerical experiments, the efficiency and accuracy of the proposed method are assessed through two examples, demonstrating its performance on both rectangular and nonrectangular domains.

Originality/value

This research work introduces the IGC method as a simulation technique for the phase-field crystal model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 August 2024

Sandipan Kumar Das

The boundary integral method (BIM) is very attractive to practicing engineers as it reduces the dimensionality of the problem by one, thereby making the procedure computationally…

Abstract

Purpose

The boundary integral method (BIM) is very attractive to practicing engineers as it reduces the dimensionality of the problem by one, thereby making the procedure computationally inexpensive compared to its peers. The principal feature of this technique is the limitation of all its computations to only the boundaries of the domain. Although the procedure is well developed for the Laplace equation, the Poisson equation offers some computational challenges. Nevertheless, the literature provides a couple of solution methods. This paper revisits an alternate approach that has not gained much traction within the community. The purpose of this paper is to address the main bottleneck of that approach in an effort to popularize it and critically evaluate the errors introduced into the solution by that method.

Design/methodology/approach

The primary intent in the paper is to work on the particular solution of the Poisson equation by representing the source term through a Fourier series. The evaluation of the Fourier coefficients requires a rectangular domain even though the original domain can be of any arbitrary shape. The boundary conditions for the homogeneous solution gets modified by the projection of the particular solution on the original boundaries. The paper also develops a new Gauss quadrature procedure to compute the integrals appearing in the Fourier coefficients in case they cannot be analytically evaluated.

Findings

The current endeavor has developed two different representations of the source terms. A comprehensive set of benchmark exercises has successfully demonstrated the effectiveness of both the methods, especially the second one. A subsequent detailed analysis has identified the errors emanating from an inadequate number of boundary nodes and Fourier modes, a high difference in sizes between the particular solution and the original domains and the used Gauss quadrature integration procedures. Adequate mitigation procedures were successful in suppressing each of the above errors and in improving the solution accuracy to any desired level. A comparative study with the finite difference method revealed that the BIM was as accurate as the FDM but was computationally more efficient for problems of real-life scale. A later exercise minutely analyzed the heat transfer physics for a fin after validating the simulation results with the analytical solution that was separately derived. The final set of simulations demonstrated the applicability of the method to complicated geometries.

Originality/value

First, the newly developed Gauss quadrature integration procedure can efficiently compute the integrals during evaluation of the Fourier coefficients; the current literature lacks such a tool, thereby deterring researchers to adopt this category of methods. Second, to the best of the author’s knowledge, such a comprehensive error analysis of the solution method within the BIM framework for the Poisson equation does not currently exist in the literature. This particular exercise should go a long way in increasing the confidence of the research community to venture into this category of methods for the solution of the Poisson equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2