Search results

1 – 3 of 3
Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 26 April 2024

Adela Sobotkova, Ross Deans Kristensen-McLachlan, Orla Mallon and Shawn Adrian Ross

This paper provides practical advice for archaeologists and heritage specialists wishing to use ML approaches to identify archaeological features in high-resolution satellite…

Abstract

Purpose

This paper provides practical advice for archaeologists and heritage specialists wishing to use ML approaches to identify archaeological features in high-resolution satellite imagery (or other remotely sensed data sources). We seek to balance the disproportionately optimistic literature related to the application of ML to archaeological prospection through a discussion of limitations, challenges and other difficulties. We further seek to raise awareness among researchers of the time, effort, expertise and resources necessary to implement ML successfully, so that they can make an informed choice between ML and manual inspection approaches.

Design/methodology/approach

Automated object detection has been the holy grail of archaeological remote sensing for the last two decades. Machine learning (ML) models have proven able to detect uniform features across a consistent background, but more variegated imagery remains a challenge. We set out to detect burial mounds in satellite imagery from a diverse landscape in Central Bulgaria using a pre-trained Convolutional Neural Network (CNN) plus additional but low-touch training to improve performance. Training was accomplished using MOUND/NOT MOUND cutouts, and the model assessed arbitrary tiles of the same size from the image. Results were assessed using field data.

Findings

Validation of results against field data showed that self-reported success rates were misleadingly high, and that the model was misidentifying most features. Setting an identification threshold at 60% probability, and noting that we used an approach where the CNN assessed tiles of a fixed size, tile-based false negative rates were 95–96%, false positive rates were 87–95% of tagged tiles, while true positives were only 5–13%. Counterintuitively, the model provided with training data selected for highly visible mounds (rather than all mounds) performed worse. Development of the model, meanwhile, required approximately 135 person-hours of work.

Research limitations/implications

Our attempt to deploy a pre-trained CNN demonstrates the limitations of this approach when it is used to detect varied features of different sizes within a heterogeneous landscape that contains confounding natural and modern features, such as roads, forests and field boundaries. The model has detected incidental features rather than the mounds themselves, making external validation with field data an essential part of CNN workflows. Correcting the model would require refining the training data as well as adopting different approaches to model choice and execution, raising the computational requirements beyond the level of most cultural heritage practitioners.

Practical implications

Improving the pre-trained model’s performance would require considerable time and resources, on top of the time already invested. The degree of manual intervention required – particularly around the subsetting and annotation of training data – is so significant that it raises the question of whether it would be more efficient to identify all of the mounds manually, either through brute-force inspection by experts or by crowdsourcing the analysis to trained – or even untrained – volunteers. Researchers and heritage specialists seeking efficient methods for extracting features from remotely sensed data should weigh the costs and benefits of ML versus manual approaches carefully.

Social implications

Our literature review indicates that use of artificial intelligence (AI) and ML approaches to archaeological prospection have grown exponentially in the past decade, approaching adoption levels associated with “crossing the chasm” from innovators and early adopters to the majority of researchers. The literature itself, however, is overwhelmingly positive, reflecting some combination of publication bias and a rhetoric of unconditional success. This paper presents the failure of a good-faith attempt to utilise these approaches as a counterbalance and cautionary tale to potential adopters of the technology. Early-majority adopters may find ML difficult to implement effectively in real-life scenarios.

Originality/value

Unlike many high-profile reports from well-funded projects, our paper represents a serious but modestly resourced attempt to apply an ML approach to archaeological remote sensing, using techniques like transfer learning that are promoted as solutions to time and cost problems associated with, e.g. annotating and manipulating training data. While the majority of articles uncritically promote ML, or only discuss how challenges were overcome, our paper investigates how – despite reasonable self-reported scores – the model failed to locate the target features when compared to field data. We also present time, expertise and resourcing requirements, a rarity in ML-for-archaeology publications.

Details

Journal of Documentation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0022-0418

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Only Open Access

Year

Last 6 months (3)

Content type

Earlycite article (3)
1 – 3 of 3