Search results

1 – 3 of 3
Article
Publication date: 21 February 2024

Shuliu Wang, Qianqian Liu, Jin Wang, Nana Chen, JunHang Chen, Jialiang Song, Xin Zhang and Kui Xiao

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data…

Abstract

Purpose

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data analysis.

Design/methodology/approach

Samples were subjected to accelerated corrosion for 136 days via salt spray tests to simulate the natural conditions of marine environment and consequently accelerate the experiments. Subsequently, the samples were examined using various test methods, such as EDS, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS), and the obtained data were analysed.

Findings

Galvalume coatings comprised interdigitated zinc (Zn)-rich and dendritic Al-rich phases. Corrosion was observed to begin with a Zn-rich phase. The primary components of the corrosion product film were Al2O3 and Zn5(OH)8Cl2·H2O. It was confirmed that the role of Al was to form a dense protective film, thereby successfully blocking the entry of corrosive media and protecting the iron substrate.

Originality/value

This study provides a clearer understanding of the corrosion mechanism and kinetics of galvalume coatings in a simulated marine environment. In addition, the role of Al, which is rarely mentioned in the literature, was investigated.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 July 2023

Xiaodan Zhang, Zhanbo Zhao and Kui Wang

This study aims to examine the moment-to-moment (MTM) effects of in-consumption dynamic comments on consumers' responses to digital engagement and the underlying mechanisms…

Abstract

Purpose

This study aims to examine the moment-to-moment (MTM) effects of in-consumption dynamic comments on consumers' responses to digital engagement and the underlying mechanisms involved, as well as the interactive role of advertisements embedded in short-form online video.

Design/methodology/approach

This study uses data extracted from 2,081 videos posted on the prominent Chinese online live platform, Bilibili. The hypotheses are tested using regression models and natural language processing.

Findings

The results indicate that the intensity of live comments at the beginning negatively affects users' digital engagement, while a corresponding increase in live comments at the end elicits a positive effect. A linear trend and peak difference in live comments intensity positively affect digital engagement, while the variability of live comment intensity exerts a negative effect. These MTM effects were driven by sentiments of live comments. Furthermore, in-video advertisements are likely to amplify the negative beginning effect on users' digital engagement and mitigate the negative variability of live comments.

Originality/value

This study is the first to examine the direct effects of MTM comments from the online temporal sequence perspective, differentiating the process- and performance-based engagement. The mechanism and interactive role of in-video advertisements were identified. These findings contribute to literature on interactive marketing and provide valuable guidance for influencer marketing.

Details

Journal of Research in Interactive Marketing, vol. 18 no. 3
Type: Research Article
ISSN: 2040-7122

Keywords

Article
Publication date: 26 March 2024

Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…

Abstract

Purpose

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.

Design/methodology/approach

The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.

Findings

Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.

Originality/value

To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

Last week (3)

Content type

1 – 3 of 3