Search results

1 – 1 of 1
Article
Publication date: 5 May 2015

Khaled Abdulaziz Alaghbari, Lim Heng Siong and Alan W.C. Tan

The purpose of this paper is to propose a robust correntropy assisted blind channel estimator for multiple-input multiple-output orthogonal frequency-division multiplexing…

Abstract

Purpose

The purpose of this paper is to propose a robust correntropy assisted blind channel estimator for multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) for improved channel gains estimation and channel ordering and sign ambiguities resolution in non-Gaussian noise channel.

Design/methodology/approach

The correntropy independent component analysis with L1-norm cost function is used for blind channel estimation. Then a correntropy-based method is formulated to resolve the sign and order ambiguities of the channel estimates.

Findings

Simulation study on Gaussian noise scenario shows that the proposed method achieves almost the same performance as the conventional L2-norm based method. However, in non-Gaussian noise scenarios performance of the proposed method significantly outperforms the conventional and other popular estimators in terms of mean square error (MSE). To solve the ordering and sign ambiguities problems, an auto-correntropy-based method is proposed and compared with the extended cross-correlation-based method. Simulation study shows improved performance of the proposed method in terms of MSE.

Originality/value

This paper presents for the first time, a correntropy-based blind channel estimator for MIMO-OFDM as well as simulated comparison results with traditional correlation-based methods in non-Gaussian noise environment.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1