Search results

1 – 5 of 5
Article
Publication date: 9 June 2023

Nian Zhang, Shuo Zheng, Lingyuan Tian and Guiwu Wei

In the supply chain disruption risk, the issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Abstract

Purpose

In the supply chain disruption risk, the issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Design/methodology/approach

Considering the influence of irrational emotions of decision makers, an evaluation model is designed by the regret theory and VIKOR method, which makes the decision-making process closer to reality.

Findings

The paper has some innovations in the evaluation index system and evaluation model construction. The method has good stability under the risk of supply chain interruption.

Originality/value

The mixed evaluation information is used to describe the attributes, and the evaluation index system is constructed by the combined method of the social network analysis method and the literature research method to ensure the accuracy and accuracy of the extracted attributes. The issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

19

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 December 2023

Umair Khan, William Pao, Karl Ezra Salgado Pilario, Nabihah Sallih and Muhammad Rehan Khan

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime…

72

Abstract

Purpose

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime identification.

Design/methodology/approach

A numerical two-phase flow model was validated against experimental data and was used to generate dynamic pressure signals for three different flow regimes. First, four distinct methods were used for feature extraction: discrete wavelet transform (DWT), empirical mode decomposition, power spectral density and the time series analysis method. Kernel Fisher discriminant analysis (KFDA) was used to simultaneously perform dimensionality reduction and machine learning (ML) classification for each set of features. Finally, the Shapley additive explanations (SHAP) method was applied to make the workflow explainable.

Findings

The results highlighted that the DWT + KFDA method exhibited the highest testing and training accuracy at 95.2% and 88.8%, respectively. Results also include a virtual flow regime map to facilitate the visualization of features in two dimension. Finally, SHAP analysis showed that minimum and maximum values extracted at the fourth and second signal decomposition levels of DWT are the best flow-distinguishing features.

Practical implications

This workflow can be applied to opaque pipes fitted with pressure sensors to achieve flow assurance and automatic monitoring of two-phase flow occurring in many process industries.

Originality/value

This paper presents a novel flow regime identification method by fusing dynamic pressure measurements with ML techniques. The authors’ novel DWT + KFDA method demonstrates superior performance for flow regime identification with explainability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 June 2023

Tsu Yian Lee, Faridahanim Ahmad and Mohd Adib Sarijari

Activity sampling is a technique to monitor onsite labourers' time utilisation, which can provide helpful information for the management level to implement suitable labour…

Abstract

Purpose

Activity sampling is a technique to monitor onsite labourers' time utilisation, which can provide helpful information for the management level to implement suitable labour productivity improvement strategies continuously. However, there needs to be a review paper that compiles research on activity sampling studies to give readers a thorough grasp of the research trend. Hence, this paper aims to investigate the activity sampling techniques applied in earlier research from the angles of activity categories formation, data collection methods and data analysis.

Design/methodology/approach

The method used in this paper is a systematic review guided by the PRISMA framework. The search was conducted in Scopus and Web of Science. The inclusion and exclusion criteria were applied, selecting 70 articles published between 2011 and 2022 for data extraction and analysis. The analysis method involved a qualitative synthesis of the findings from the selected articles.

Findings

Activity sampling is broadly divided into four stages: targeting trade, determining activity categories, data collection and data analysis. This paper divides the activity categories into three levels and classifies the data collection methods into manual observation, sensor-based activity sampling and computer vision-based activity sampling. The previous studies applied activity sampling for two construction management purposes: labour productivity monitoring and ergonomic safety monitoring. This paper also further discusses the scientific research gaps and future research directions.

Originality/value

This review paper contributes to the body of knowledge in construction management by thoroughly understanding current state-of-the-art activity sampling techniques and research gaps.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Access

Year

Last 12 months (5)

Content type

Earlycite article (5)
1 – 5 of 5