Search results

1 – 1 of 1
Open Access
Article
Publication date: 26 August 2024

Stelvia V. Matos, Martin C. Schleper, Jeremy K. Hall, Chad M. Baum, Sean Low and Benjamin K. Sovacool

This paper aims to explore three operations and supply chain management (OSCM) approaches for meeting the 2 °C targets to counteract climate change: adaptation (adjusting to…

Abstract

Purpose

This paper aims to explore three operations and supply chain management (OSCM) approaches for meeting the 2 °C targets to counteract climate change: adaptation (adjusting to climatic impacts); mitigation (innovating towards low-carbon practices); and carbon-removing negative emissions technologies (NETs). We suggest that adaptation nor mitigation may be enough to meet the current climate targets, thus calling for NETs, resulting in the following question: How can operations and supply chains be reconceptualized for NETs?

Design/methodology/approach

We draw on the sustainable supply chain and transitions discourses along with interview data involving 125 experts gathered from a broad research project focused on geoengineering and NETs. We analyze three case studies of emerging NETs (biochar, direct air carbon capture and storage and ocean alkalinity enhancement), leading to propositions on the link between OSCM and NETs.

Findings

Although some NETs are promising, there remains considerable variance and uncertainty over supply chain configurations, efficacy, social acceptability and potential risks of unintended detrimental consequences. We introduce the concept of transformative OSCM, which encompasses policy interventions to foster the emergence of new technologies in industry sectors driven by social mandates but lack clear commercial incentives.

Originality/value

To the best of the authors’ knowledge, this paper is among the first that studies NETs from an OSCM perspective. It suggests a pathway toward new industry structures and policy support to effectively tackle climate change through carbon removal.

Details

International Journal of Operations & Production Management, vol. 44 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Access

Only content I have access to

Year

Last month (1)

Content type

1 – 1 of 1