Search results

1 – 3 of 3
Article
Publication date: 11 May 2010

Kaiçar Ammous, Elyes Haouas and Slim Abid

The purpose of this paper is to develop a simulation tool which permits reducing the cost of long time‐range simulation of complex converters and running at high frequency.

Abstract

Purpose

The purpose of this paper is to develop a simulation tool which permits reducing the cost of long time‐range simulation of complex converters and running at high frequency.

Design/methodology/approach

A different method is used to represent a simplified converter but the adopted technique uses the average representation of the cell converter.

Findings

The paper shows that the use of averaged representation of the pulse width modulation switch in multilevel converters is staying applied. The main advantage of the proposed averaged model is its simplified representation when only electrical behaviour is considered.

Research limitations/implications

The analytical algorithm of the averaged model can be introduced in different simulator as it has a description language, enabling study of the Compatibilité Electromagnétique and electrothermal phenomena.

Originality/value

This paper presents an averaged model of the multilevel converter which can be implemented in any simulator as it has a description language.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 July 2007

Kaiçar Ammous, Slim Abid and Anis Ammous

The paper aims to focus on the semiconductor temperature prediction in the multichip modules by using a simplified 1D model, easy to implement in the electronic simulation tools.

Abstract

Purpose

The paper aims to focus on the semiconductor temperature prediction in the multichip modules by using a simplified 1D model, easy to implement in the electronic simulation tools.

Design/methodology/approach

Accurate prediction of temperature variation of power semiconductor devices in power electronic circuits is important for obtaining optimum designs and estimating reliability levels. Temperature estimation of power electronic devices has generally been performed using transient thermal equivalent circuits. This paper has studied the thermal behaviour of the power modules. The study leads to correcting the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on multidimensional thermal phenomena in the structure.

Findings

The classic analysis of thermal phenomena in the multichip structures, independently of powers’ dissipated magnitude and boundary conditions, is not correct. An advanced 1D thermal model based on the finite element method is proposed. It takes into account the effect of the heat‐spreading angle of the different devices in the module.

Originality/value

The paper focuses on mathematical model of the thermal behaviour in the power module. The study leads to a correction of the junction temperature values estimated from the transient thermal impedance of each component given by manufacturers. The proposed model gives a good trade‐off between accuracy, efficiency and simulation cost.

Details

Microelectronics International, vol. 24 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 2014

Hanen Mejbri, Kaiçar Ammous, Slim Abid, Hervé Morel and Anis Ammous

– This paper aims to focus on the trade-off between losses and converter cost.

Abstract

Purpose

This paper aims to focus on the trade-off between losses and converter cost.

Design/methodology/approach

The continual development of power electronic converters, for a wide range of applications such as renewable energy systems (interfacing photovoltaic panels via power converters), is characterized by the requirements for higher efficiency and lower production costs. To achieve such challenging objectives, a computer-aided design optimization based on genetic algorithms is developed in Matlab environment. The elitist non-dominated sorting genetic algorithm is used to perform search and optimization, whereas averaged models are used to estimate power losses in different semiconductors devices. The design problem requires minimizing the losses and cost of the boost converter under electrical constraints. The optimization variables are, as for them, the switching frequency, the boost inductor, the DC capacitor and the types of semiconductor devices (IGBT and MOSFET). It should be pointed out that boost topology is considered in this paper but the proposed methodology is easily applicable to other topologies.

Findings

The results show that such design methodology for DC-DC converters presents several advantages. In particular, it proposes to the designer a set of solutions – as an alternative of a single one – so that the authors can choose a posteriori the adequate solution for the application under consideration. This then allows the possibility of finding the best design among all the available choices. Furthermore, the design values for the selected solution were obtainable components.

Originality/value

The authors focus on the general aspect of the discrete optimization approach proposed here. It can also be used by power electronics designers with the help of additional constraints in accordance with their specific applications. Furthermore, the use of such non-ideal average models with the multi-objective optimization is the original contribution of the paper and it has not been suggested so far.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Access

Year

Content type

Article (3)
1 – 3 of 3