Search results

1 – 2 of 2
Article
Publication date: 1 May 2024

Koech Cheruiyot, Nosipho Mavundla, Mncedisi Siteleki and Ezekiel Lengaram

With revolutions in the telecommunication sector having led to wide unprecedented consequences in all facets of human life, this paper aims to examine the relationship between…

Abstract

Purpose

With revolutions in the telecommunication sector having led to wide unprecedented consequences in all facets of human life, this paper aims to examine the relationship between cell phone tower base stations (CPTBSs) and residential property prices within the City of Johannesburg (CoJ), South Africa.

Design/methodology/approach

The authors align their work with global literature and assess how the impact of CPTBSs influences residential property values in South Africa. The authors use a semi-log hedonic pricing model to test the hypothesis that proximity of CPTBSs to residential properties does not account for any variation in residential property prices.

Findings

The results show a significant impact that proximity of CPTBS has on residential property sale prices. However, the impact of CTPBSs’ proximity on residential property prices depends on their distance from the residential properties. The closer a residential property is to the CTPBS, the greater the impact that the CTPBS will have on the selling price of the residential property.

Originality/value

With international studies offering mixed findings on the impact of CPTBSs on residential property values, there is limited research on their impact in South Africa. The findings of this study offer crucial insights for the real estate practitioners, property owners, telecommunications companies and the public, providing a nuanced understanding of the relationship between CPTBSs and property values. This research helps property owners understand the effects of CPTBSs on their properties, and it assists property valuers in gauging the impact of CPTBSs on property values.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 7 May 2024

Nalinda Dissanayaka, Hamish Alexander, Danilo Carluccio, Michael Redmond, Luigi-Jules Vandi and James I. Novak

Three-dimensional (3D)printed skulls for neurosurgical training are increasingly being used due to the widespread access to 3D printing technology, their low cost and accuracy, as…

Abstract

Purpose

Three-dimensional (3D)printed skulls for neurosurgical training are increasingly being used due to the widespread access to 3D printing technology, their low cost and accuracy, as well as limitations and ethical concerns associated with using human cadavers. However, little is known about the risks of airborne particles or volatile organic compounds (VOCs) released while drilling into 3D-printed plastic models. The aim of this study is to assess the level of exposure to airborne contaminants while burr hole drilling.

Design/methodology/approach

3D-printed skull samples were produced using three different materials (polyethylene terephthalate glycol [PETG], white resin and BoneSTN) across three different 3D print processes (fused filament fabrication, stereolithography [SLA] and material jetting). A neurosurgeon performed extended burr hole drilling for 10 min on each sample. Spot measurements of particulate matter (PM2.5 and PM10) were recorded, and air samples were analysed for approximately 90 VOCs.

Findings

The particulate matter for PETG was found to be below the threshold value for respirable particles. However, the particulate matter for white resin and BoneSTN was found to be above the threshold value at PM10, which could be harmful for long periods of exposure without personal protective equipment (PPE). The VOC measurements for all materials were found to be below safety thresholds, and therefore not harmful.

Originality/value

To the best of the authors’ knowledge, this is the first study to evaluate the safety of 3D-printed materials for burr hole surgical drilling. It recommends PETG as a safe material requiring minimal respiratory control measures, whereas resin-based materials will require safety controls to deal with airborne particles.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last week (2)

Content type

Earlycite article (2)
1 – 2 of 2