Search results

1 – 10 of 217
Article
Publication date: 19 August 2024

Walaa Metwally Kandil, Fawzi H. Zarzoura, Mahmoud Salah Goma and Mahmoud El-Mewafi El-Mewafi Shetiwi

This study aims to present a new rapid enhancement digital elevation model (DEM) framework using Google Earth Engine (GEE), machine learning, weighted interpolation and spatial…

Abstract

Purpose

This study aims to present a new rapid enhancement digital elevation model (DEM) framework using Google Earth Engine (GEE), machine learning, weighted interpolation and spatial interpolation techniques with ground control points (GCPs), where high-resolution DEMs are crucial spatial data that find extensive use in many analyses and applications.

Design/methodology/approach

First, rapid-DEM imports Shuttle Radar Topography Mission (SRTM) data and Sentinel-2 multispectral imagery from a user-defined time and area of interest into GEE. Second, SRTM with the feature attributes from Sentinel-2 multispectral imagery is generated and used as input data in support vector machine classification algorithm. Third, the inverse probability weighted interpolation (IPWI) approach uses 12 fixed GCPs as additional input data to assign the probability to each pixel of the image and generate corrected SRTM elevations. Fourth, gridding the enhanced DEM consists of regular points (E, N and H), and the contour interval is 5 m. Finally, densification of enhanced DEM data with GCPs is obtained using global positioning system technique through spatial interpolations such as Kriging, inverse distance weighted, modified Shepard’s method and triangulation with linear interpolation techniques.

Findings

The results were compared to a 1-m vertically accurate reference DEM (RD) obtained by image matching with Worldview-1 stereo satellite images. The results of this study demonstrated that the root mean square error (RMSE) of the original SRTM DEM was 5.95 m. On the other hand, the RMSE of the estimated elevations by the IPWI approach has been improved to 2.01 m, and the generated DEM by Kriging technique was 1.85 m, with a reduction of 68.91%.

Originality/value

A comparison with the RD demonstrates significant SRTM improvements. The suggested method clearly reduces the elevation error of the original SRTM DEM.

Article
Publication date: 8 May 2024

Lu Xu, Shuang Cao and Xican Li

In order to explore a new estimation approach of hyperspectral estimation, this paper aims to establish a hyperspectral estimation model of soil organic matter content with the…

113

Abstract

Purpose

In order to explore a new estimation approach of hyperspectral estimation, this paper aims to establish a hyperspectral estimation model of soil organic matter content with the principal gradient grey information based on the grey information theory.

Design/methodology/approach

Firstly, the estimation factors are selected by transforming the spectral data. The eigenvalue matrix of the modelling samples is converted into grey information matrix by using the method of increasing information and taking large, and the principal gradient grey information of modelling samples is calculated by using the method of pro-information interpolation and straight-line interpolation, respectively, and the hyperspectral estimation model of soil organic matter content is established. Then, the positive and inverse grey relational degree are used to identify the principal gradient information quantity of the test samples corresponding to the known patterns, and the cubic polynomial method is used to optimize the principal gradient information quantity for improving estimation accuracy. Finally, the established model is used to estimate the soil organic matter content of Zhangqiu and Jiyang District of Jinan City, Shandong Province.

Findings

The results show that the model has the higher estimation accuracy, among the average relative error of 23 test samples is 5.7524%, and the determination coefficient is 0.9002. Compared with the commonly used methods such as multiple linear regression, support vector machine and BP neural network, the hyperspectral estimation accuracy of soil organic matter content is significantly improved. The application example shows that the estimation model proposed in this paper is feasible and effective.

Practical implications

The estimation model in this paper not only fully excavates and utilizes the internal grey information of known samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.

Originality/value

The paper succeeds in realizing both a new hyperspectral estimation model of soil organic matter content based on the principal gradient grey information and effectively dealing with the randomness and grey uncertainty in spectral estimation.

Article
Publication date: 11 September 2024

Pengkun Cheng, Juliang Xiao, Wei Zhao, Yangyang Zhang, Haitao Liu and Xianlei Shan

This paper aims to enhance the machining accuracy of hybrid robots by treating the moving platform as the first joint of a serial robot for direct position measurement and…

Abstract

Purpose

This paper aims to enhance the machining accuracy of hybrid robots by treating the moving platform as the first joint of a serial robot for direct position measurement and integrating external grating sensors with motor encoders for real-time error compensation.

Design/methodology/approach

Initially, a spherical coordinate system is established using one linear and two circular grating sensors. This system enables direct acquisition of the moving platform’s position in the hybrid robot. Subsequently, during the coarse interpolation stage, the motor command for the next interpolation point is dynamically updated using error data from external grating sensors and motor encoders. Finally, fuzzy proportional integral derivative (PID) control is applied to maintain robot stability post-compensation.

Findings

Experiments were conducted on the TriMule-600 hybrid robot. The results indicate that the following errors of the five grating sensors are reduced by 94%, 93%, 80%, 75% and 88% respectively, after compensation. Using the fourth drive joint as an example, it was verified that fuzzy adaptive PID control performs better than traditional PID control.

Practical implications

The proposed online error compensation strategy significantly enhances the positional accuracy of the robot end, thereby improving the actual processing quality of the workpiece.

Social implications

This method presents a technique for achieving online error compensation in hybrid robots, which promotes the advancement of the manufacturing industry.

Originality/value

This paper proposes a cost-effective and practical method for online error compensation in hybrid robots using grating sensors, which contributes to the advancement of hybrid robot technology.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 June 2024

Thenysson Matos, Maisa Tonon Bitti Perazzini and Hugo Perazzini

This paper aims to analyze the performance of artificial neural networks with filling methods in predicting the minimum fluidization velocity of different biomass types for…

Abstract

Purpose

This paper aims to analyze the performance of artificial neural networks with filling methods in predicting the minimum fluidization velocity of different biomass types for bioenergy applications.

Design/methodology/approach

An extensive literature review was performed to create an efficient database for training purposes. The database consisted of experimental values of the minimum fluidization velocity, physical properties of the biomass particles (density, size and sphericity) and characteristics of the fluidization (monocomponent experiments or binary mixture). The neural models developed were divided into eight different cases, in which the main difference between them was the filling method type (K-nearest neighbors [KNN] or linear interpolation) and the number of input neurons. The results of the neural models were compared to the classical correlations proposed by the literature and empirical equations derived from multiple regression analysis.

Findings

The performance of a given filling method depended on the characteristics and size of the database. The KNN method was superior for lower available data for training and specific fluidization experiments, like monocomponent or binary mixture. The linear interpolation method was superior for a wider and larger database, including monocomponent and binary mixture. The performance of the neural model was comparable with the predictions of the most well-known correlations from the literature.

Originality/value

Techniques of machine learning, such as filling methods, were used to improve the performance of the neural models. Besides the typical comparisons with conventional correlations, comparisons with three main equations derived from multiple regression analysis were reported and discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 May 2024

Dongfei Li, Hongtao Wang and Ning Dai

This paper aims to propose a method for automatic design of additive manufacturing (AM) flow channel paths driven by path length and pressure loss. The research focuses on the…

Abstract

Purpose

This paper aims to propose a method for automatic design of additive manufacturing (AM) flow channel paths driven by path length and pressure loss. The research focuses on the automatic design of channel paths, intending to achieve the shortest flow channel length or minimum pressure loss and improve the design efficiency of AM parts.

Design/methodology/approach

The initial layout of the flow channels is redesigned to consider the channels print supports. Boundary conditions and constraints are defined according to the redesigned channels layout, and the equation consisting of channel length and pressure loss is used as the objective function. Then the path planning simulation is performed based on particle swarm algorithm. The proposed method describes the path of flow channels using spline cures. The spline curve is controlled by particle (one particle represents a path), and the particle is randomly generated within the design space. After the path planning simulation is completed, the generated paths are used to create 3D parts.

Findings

Case study 1 demonstrates the automatic design of hydraulic spool valve. Compared to conventional spool valve, the pressure loss was reduced by 86% and the mass was reduced by 83%. The design results of case study 2 indicate that this approach is able to find the shortest channel path with lower computational cost.

Originality/value

The automatic design method of flow channel paths driven by path length and pressure loss presented in this paper provides a novel solution for the creation of AM flow components.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 July 2024

Gang Peng

This paper aims to construct positivity-preserving finite volume schemes for the three-dimensional convection–diffusion equation that are applicable to arbitrary polyhedral grids.

Abstract

Purpose

This paper aims to construct positivity-preserving finite volume schemes for the three-dimensional convection–diffusion equation that are applicable to arbitrary polyhedral grids.

Design/methodology/approach

The cell vertices are used to define the auxiliary unknowns, and the primary unknowns are defined at cell centers. The diffusion flux is discretized by the classical nonlinear two-point flux approximation. To ensure the fully discrete scheme has positivity-preserving property, an improved discretization method for the convection flux was presented. Besides, a new positivity-preserving vertex interpolation method is derived from the linear reconstruction in the discretization of convection flux. Moreover, the Picard iteration method may have slow convergence in solving the nonlinear system. Thus, the Anderson acceleration of Picard iteration method is used to solve the nonlinear system. A condition number monitor of matrix is employed in the Anderson acceleration method to achieve better robustness.

Findings

The new scheme is applicable to arbitrary polyhedral grids and has a second-order accuracy. The results of numerical experiments also confirm the positivity-preserving of the discretization scheme.

Originality/value

1. This article presents a new positivity-preserving finite volume scheme for the 3D convection–diffusion equation. 2. The new discretization scheme of convection flux is constructed. 3. A new second-order interpolation algorithm is given to eliminate the auxiliary unknowns in flux expressions. 4. An improved Anderson acceleration method is applied to accelerate the convergence of Picard iterations. 5. This scheme can solve the convection–diffusion equation on the distorted meshes with second-order accuracy.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 April 2024

Seyed Abbas Rajaei, Afshin Mottaghi, Hussein Elhaei Sahar and Behnaz Bahadori

This study aims to investigate the spatial distribution of housing prices and identify the affecting factors (independent variable) on the cost of residential units (dependent…

Abstract

Purpose

This study aims to investigate the spatial distribution of housing prices and identify the affecting factors (independent variable) on the cost of residential units (dependent variable).

Design/methodology/approach

The method of the present study is descriptive-analytical and has an applied purpose. The used statistical population in this study is the residential units’ price in Tehran in 2021. For this purpose, the average per square meter of residential units in the city neighborhoods was entered in the geographical information system. Two techniques of ordinary least squares regression and geographically weighted regression have been used to analyze housing prices and modeling. Then, the results of the ordinary least squares regression and geographically weighted regression models were compared by using the housing price interpolation map predicted in each model and the accurate housing price interpolation map.

Findings

Based on the results, the ordinary least squares regression model has poorly modeled housing prices in the study area. The results of the geographically weighted regression model show that the variables (access rate to sports fields, distance from gas station and water station) have a direct and significant effect. Still, the variable (distance from fault) has a non-significant impact on increasing housing prices at a city level. In addition, to identify the affecting variables of housing prices, the results confirm the desirability of the geographically weighted regression technique in terms of accuracy compared to the ordinary least squares regression technique in explaining housing prices. The results of this study indicate that the housing prices in Tehran are affected by the access level to urban services and facilities.

Originality/value

Identifying factors affecting housing prices helps create sustainable housing in Tehran. Building sustainable housing represents spending less energy during the construction process together with the utilization phase, which ultimately provides housing at an acceptable price for all income deciles. In housing construction, the more you consider the sustainable housing principles, the more sustainable housing you provide and you take a step toward sustainable development. Therefore, sustainable housing is an important planning factor for local authorities and developers. As a result, it is necessary to institutionalize an integrated vision based on the concepts of sustainable development in the field of housing in the Tehran metropolis.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 2 July 2024

Théodore Cherrière, Sami Hlioui, François Louf and Luc Laurent

This study aims to propose a general methodology to handle multimaterial filtering for density-based topology optimization containing periodic or antiperiodic boundary conditions…

Abstract

Purpose

This study aims to propose a general methodology to handle multimaterial filtering for density-based topology optimization containing periodic or antiperiodic boundary conditions, which are expected to reduce the simulation time of electrical machines. The optimization of the material distribution in a permanent magnet synchronous machine rotor illustrates the relevance of this approach.

Design/methodology/approach

The optimization algorithm relies on an augmented Lagrangian with a projected gradient descent. The 2D finite element method computes the physical and adjoint states to evaluate the objective function and its sensitivities. Concerning regularization, a mathematical development leads to a multimaterial convolution filtering methodology that is consistent with the boundary conditions and helps eliminate artifacts.

Findings

The method behaves as expected and shows the superiority of multimaterial topology optimization over bimaterial topology optimization for the chosen test case. Unlike the standard approach that uses a cropped convolution kernel, the proposed methodology does not artificially reflect the limits of the simulation domain in the optimized material distribution.

Originality/value

Although filtering is a standard tool in topology optimization, no attention has previously been paid to the influence of periodic or antiperiodic boundary conditions when dealing with different natures of materials. The comparison between the bimaterial and multimaterial topology optimization of a permanent magnet machine rotor without symmetry constraints constitutes another originality of this work.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 May 2024

Xiuping Li and Ye Yang

Coordinating low-carbonization and digitalization is a practical implementation pathway to achieve high-quality economic development. Regions are under great emission reduction…

Abstract

Purpose

Coordinating low-carbonization and digitalization is a practical implementation pathway to achieve high-quality economic development. Regions are under great emission reduction pressure to achieve low-carbon development. However, why and how regional emission reduction pressure influences enterprise digital transformation is lacking in the literature. This study empirically tests the impact of emission reduction pressure on enterprise digital transformation and its mechanism.

Design/methodology/approach

This article takes the data of non-financial listed companies from 2011 to 2020 as a sample. The digital transformation index is measured by entropy value method. The bidirectional fixed effect model was used to test the hypothesis.

Findings

The research results show that emission reduction pressure forces enterprise digital transformation. The mechanism lies in that emission reduction pressure improves digital transformation by promoting enterprise innovation, and digital economy moderates the nexus between emission reduction pressure and digital transformation. Furthermore, the effect of emission reduction pressure on digital transformation is more significant for non-state-owned, mature and high-tech enterprises.

Originality/value

This paper discusses the mediating role of enterprise innovation between carbon emission reduction pressure and enterprise digital transformation, as well as the moderating role of digital economy. The research expands the body of knowledge about dual carbon targets, digitization and technological innovation. The author’s findings help update the impact of regional digital economy development on enterprise digital transformation. It also provides theoretical guidance for the realization of digital transformation by enterprise innovation.

Details

Business Process Management Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 8 August 2024

Yogesh Patil, Ashik Kumar Patel, Gopal Dnyanba Gote, Yash G. Mittal, Avinash Kumar Mehta, Sahil Devendra Singh, K.P. Karunakaran and Milind Akarte

This study aims to improve the acceleration in the additive manufacturing (AM) process. AM tools, such as extrusion heads, jets, electric arcs, lasers and electron beams (EB)…

Abstract

Purpose

This study aims to improve the acceleration in the additive manufacturing (AM) process. AM tools, such as extrusion heads, jets, electric arcs, lasers and electron beams (EB), experience negligible forces. However, their speeds are limited by the positioning systems. In addition, a thin tool must travel several kilometers in tiny motions with several turns while realizing the AM part. Hence, acceleration is a more significant limiting factor than the velocity or precision for all except EB.

Design/methodology/approach

The sawtooth (ST) scanning strategy presented in this paper minimizes the time by combining three motion features: zigzag scan, 45º or 135º rotation for successive layers in G00 to avoid the CNC interpolation, and modifying these movements along 45º or 135º into sawtooth to halve the turns.

Findings

Sawtooth effectiveness is tested using an in-house developed Sand AM (SaAM) apparatus based on the laser–powder bed fusion AM technique. For a simple rectangle layer, the sawtooth achieved a path length reduction of 0.19%–1.49% and reduced the overall time by 3.508–4.889 times, proving that sawtooth uses increased acceleration more effectively than the other three scans. The complex layer study reduced calculated time by 69.80%–139.96% and manufacturing time by 47.35%–86.85%. Sawtooth samples also exhibited less dimensional variation (0.88%) than zigzag 45° (12.94%) along the build direction.

Research limitations/implications

Sawtooth is limited to flying optics AM process.

Originality/value

Development of scanning strategy for flying optics AM process to reduce the warpage by improving the acceleration.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 217