Search results

1 – 5 of 5
Open Access
Article
Publication date: 16 October 2018

Maximilian Schniedenharn, Frederik Wiedemann and Johannes Henrich Schleifenbaum

The purpose of this paper is to introduce an approach in measuring the shielding gas flow within laser powder bed fusion (L-PBF) machines under near-process conditions (regarding…

2809

Abstract

Purpose

The purpose of this paper is to introduce an approach in measuring the shielding gas flow within laser powder bed fusion (L-PBF) machines under near-process conditions (regarding oxygen content and shielding gas flow).

Design/methodology/approach

The measurements are made sequentially using a hot-wire anemometer. After a short introduction into the measurement technique, the system which places the measurement probe within the machine is described. Finally, the measured shielding gas flow of a commercial L-PBF machine is presented.

Findings

An approach to measure the shielding gas flow within SLM machines has been developed and successfully tested. The use of a thermal anemometer along with an automated probe-placement system enables the space-resolved measurement of the flow speed and its turbulence.

Research limitations/implications

The used single-normal (SN) hot-wire anemometer does not provide the flow vectors’ orientation. Using a probe with two or three hot-films and an improved placement system will provide more information about the flow and less disturbance to it.

Originality/value

A measurement system which allows the measurement of the shielding gas flow within commercial L-PBF machines is presented. This enables the correlation of the shielding gas flow with the resulting parts’ quality.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 24 August 2023

Chiara Bertolin and Filippo Berto

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Abstract

Purpose

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Design/methodology/approach

It starts by reviewing the gaps in knowledge and practice which led to the creation and implementation of the research project SyMBoL—Sustainable Management of Heritage Buildings in long-term perspective funded by the Norwegian Research Council over the 2018–2022 period. The SyMBoL project is the motivation at the base of this special issue.

Findings

The editorial paper briefly presents the main outcomes of SyMBoL. It then reviews the contributions to the Special Issue, focussing on the connection or differentiation with SyMBoL and on multidisciplinary findings that address some of the initial referred gaps.

Originality/value

The article shortly summarizes topics related to sustainable preservation of heritage buildings in time of reduced resources, energy crisis and impacts of natural hazards and global warming. Finally, it highlights future research directions targeted to overcome, or partially mitigate, the above-mentioned challenges, for example, taking advantage of no sestructive techniques interoperability, heritage building information modelling and digital twin models, and machine learning and risk assessment algorithms.

Open Access
Article
Publication date: 30 September 2019

Laura D. Vallejo-Melgarejo, Ronald G. Reifenberger, Brittany A. Newell, Carlos A. Narváez-Tovar and José M. Garcia-Bravo

An Autodesk Ember three-dimensional (3D) printer was used to print optical components from Clear PR48 photocurable resin. The cured PR48 was characterized by the per cent of light…

3664

Abstract

Purpose

An Autodesk Ember three-dimensional (3D) printer was used to print optical components from Clear PR48 photocurable resin. The cured PR48 was characterized by the per cent of light transmitted and the index of refraction, which was measured with a prism spectrometer. Lenses and diffraction gratings were also printed and characterized. The focal length of the printed lenses agreed with predictions based on the thin lens equation. The periodicity and effective slit width of the printed gratings were determined from both optical micrographs and fits to the Fraunhofer diffraction equation. This study aims to demonstrate the advantages offered by a layer-by-layer DLP printing process for the manufacture of optical components for use in the visible region of the electromagnetic spectrum.

Design/methodology/approach

A 3D printer was used to print both lenses and diffraction gratings from Standard Clear PR48 photocurable resin. The manufacturing process of the lenses and the diffraction gratings differ mainly in the printing angle with respect to the printer x-y-axes. The transmission diffraction gratings studied here were manufactured with nominal periodicities of 10, 25 and 50 µm. The aim of this study was to optically determine the effective values for the distance between slits, d, and the effective width of the slits, w, and to compare these values with the printed layer thickness.

Findings

The normalized diffraction patterns measured in this experiment for the printed gratings with layer thickness of 10, 25 and 50 µm are shown by the solid dots in Figures 8(a)-(c). Also shown as a red solid line are the fits to the experimental diffraction data. The effective values of d and w obtained from fitting the data are compared to the nominal layer thickness of the printed gratings. The effective distance between slits required to fit the diffraction patterns are well approximated by the printed layer thickness to within 14, 4 and 16 per cent for gratings with a nominal 10, 25 and 50 µm layer thickness, respectively.

Research limitations/implications

Chromatic aberration is present in all polymer lenses, and the authors have not attempted to characterize it in this study. These materials could be used for achromatic lenses if paired with a crown-type material in an achromatic doublet configuration, because this would correct the chromatic aberration issues. It is worthwhile to compare the per cent transmission in cured PR48 resin (approximately 80 per cent) to the percent transmission found in common optical materials like BK7 (approximately 92 per cent) over the visible region. The authors attribute the lower transmission in PR48 to a combination of surface scattering and increased absorption. At the present time, the authors do not know what fraction of the lower transmission is related to the surface quality resulting from sample polishing.

Practical implications

There are inherent limitations to the 3D manufacturing process that affect the performance of lenses. Approximations to a curved surface in the design software, the printing resolution of the Autodesk Ember printer and the anisotropy due to printing in layers are believed to be the main issues. The performance of the lenses is also affected by internal imperfections in the printed material, in particular the presence of bubbles and the inclusion of debris like dust or fibers suspended in air. In addition, the absorption of wavelengths in the blue/ultraviolet produces an undesirable yellowing in any printed part.

Originality/value

One of the most interesting results from this study was the manufacture of diffraction gratings using 3D printing. An analysis of the diffraction pattern produced by these printed gratings yielded estimates for the slit periodicity and effective slit width. These gratings are unique because the effective slit width fills the entire volume of the printed part. This aspect makes it possible to integrate two or more optical devices in a single printed part. For example, a lens combined with a diffraction grating now becomes possible.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 April 2023

Andrea Appolloni, Vincenzo Basile, Federica Caboni and Lucia Pizzichini

In the most recent years, social, innovative, economic and political changes in the European context have characterized consumers' behaviours. The paper aims to understand if the…

3440

Abstract

Purpose

In the most recent years, social, innovative, economic and political changes in the European context have characterized consumers' behaviours. The paper aims to understand if the use of electronic commerce differs in a situation characterized by uncertainty.

Design/methodology/approach

An innovative approach to categorising online consumer behaviour considers the self-determination theory and basic psychological needs in an uncertain scenario. The research is based on a quantitative analysis obtained by clustering algorithms on a sample of 1,000 digital users in European countries. A structured questionnaire was administered online and distributed through the leading online social platforms and direct mailing.

Findings

The results show online activities during changes in consumer behaviour patterns and retailers' strategies. This research will allow online retail managers and practitioners to obtain important information to help them define appropriate customer-oriented strategic actions to enhance value in the electronic context for both customers and firms.

Originality/value

The innovation of this research approaches the categorization of online consumer behaviour by exploiting the self-determination theory in an uncertain scenario. Precisely, the novelty of this research is to highlight three detailed categories of electronic commerce consumers, namely, unwilling, halfback and digital, to collect, store and disseminate information about these categories of Online Consumers Behaviours.

Details

European Journal of Innovation Management, vol. 26 no. 7
Type: Research Article
ISSN: 1460-1060

Keywords

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2513

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Access

Only Open Access

Year

All dates (5)

Content type

1 – 5 of 5