Search results

1 – 10 of over 1000
Article
Publication date: 24 October 2023

Zijing Ye, Huan Li and Wenhong Wei

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such…

Abstract

Purpose

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path.

Design/methodology/approach

Firstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning.

Findings

Simulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality.

Originality/value

Aiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 August 2008

Angel E. Muñoz Zavala, Arturo Hernández Aguirre, Enrique R. Villa Diharce and Salvador Botello Rionda

The purpose of this paper is to present a new constrained optimization algorithm based on a particle swarm optimization (PSO) algorithm approach.

Abstract

Purpose

The purpose of this paper is to present a new constrained optimization algorithm based on a particle swarm optimization (PSO) algorithm approach.

Design/methodology/approach

This paper introduces a hybrid approach based on a modified ring neighborhood with two new perturbation operators designed to keep diversity. A constraint handling technique based on feasibility and sum of constraints violation is adopted. Also, a special technique to handle equality constraints is proposed.

Findings

The paper shows that it is possible to improve PSO and keeping the advantages of its social interaction through a simple idea: perturbing the PSO memory.

Research limitations/implications

The proposed algorithm shows a competitive performance against the state‐of‐the‐art constrained optimization algorithms.

Practical implications

The proposed algorithm can be used to solve single objective problems with linear or non‐linear functions, and subject to both equality and inequality constraints which can be linear and non‐linear. In this paper, it is applied to various engineering design problems, and for the solution of state‐of‐the‐art benchmark problems.

Originality/value

A new neighborhood structure for PSO algorithm is presented. Two perturbation operators to improve PSO algorithm are proposed. A special technique to handle equality constraints is proposed.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 18 March 2021

Pandiaraj A., Sundar C. and Pavalarajan S.

Up to date development in sentiment analysis has resulted in a symbolic growth in the volume of study, especially on more subjective text types, namely, product or movie reviews…

Abstract

Purpose

Up to date development in sentiment analysis has resulted in a symbolic growth in the volume of study, especially on more subjective text types, namely, product or movie reviews. The key difference between these texts with news articles is that their target is defined and unique across the text. Hence, the reviews on newspaper articles can deal with three subtasks: correctly spotting the target, splitting the good and bad content from the reviews on the concerned target and evaluating different opinions provided in a detailed manner. On defining these tasks, this paper aims to implement a new sentiment analysis model for article reviews from the newspaper.

Design/methodology/approach

Here, tweets from various newspaper articles are taken and the sentiment analysis process is done with pre-processing, semantic word extraction, feature extraction and classification. Initially, the pre-processing phase is performed, in which different steps such as stop word removal, stemming, blank space removal are carried out and it results in producing the keywords that speak about positive, negative or neutral. Further, semantic words (similar) are extracted from the available dictionary by matching the keywords. Next, the feature extraction is done for the extracted keywords and semantic words using holoentropy to attain information statistics, which results in the attainment of maximum related information. Here, two categories of holoentropy features are extracted: joint holoentropy and cross holoentropy. These extracted features of entire keywords are finally subjected to a hybrid classifier, which merges the beneficial concepts of neural network (NN), and deep belief network (DBN). For improving the performance of sentiment classification, modification is done by inducing the idea of a modified rider optimization algorithm (ROA), so-called new steering updated ROA (NSU-ROA) into NN and DBN for weight update. Hence, the average of both improved classifiers will provide the classified sentiment as positive, negative or neutral from the reviews of newspaper articles effectively.

Findings

Three data sets were considered for experimentation. The results have shown that the developed NSU-ROA + DBN + NN attained high accuracy, which was 2.6% superior to particle swarm optimization, 3% superior to FireFly, 3.8% superior to grey wolf optimization, 5.5% superior to whale optimization algorithm and 3.2% superior to ROA-based DBN + NN from data set 1. The classification analysis has shown that the accuracy of the proposed NSU − DBN + NN was 3.4% enhanced than DBN + NN, 25% enhanced than DBN and 28.5% enhanced than NN and 32.3% enhanced than support vector machine from data set 2. Thus, the effective performance of the proposed NSU − ROA + DBN + NN on sentiment analysis of newspaper articles has been proved.

Originality/value

This paper adopts the latest optimization algorithm called the NSU-ROA to effectively recognize the sentiments of the newspapers with NN and DBN. This is the first work that uses NSU-ROA-based optimization for accurate identification of sentiments from newspaper articles.

Details

Kybernetes, vol. 51 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 January 2014

Huijun Deng, Xue Li, Libao Sun and Shiyou Yang

The aim of this paper is to explore the potential of particle swarm optimization (PSO) methods for minimizing the sidelobe levels (SLL) and placing null at arbitrary angles of a…

Abstract

Purpose

The aim of this paper is to explore the potential of particle swarm optimization (PSO) methods for minimizing the sidelobe levels (SLL) and placing null at arbitrary angles of a nonlinear antenna array.

Design/methodology/approach

An improved PSO algorithm is designed.

Findings

The improved PSO method is an efficient and robust global optimizer for minimizing the SLL and placing null at arbitrary angles of a nonlinear antenna array.

Originality/value

Some improvements, such as the design of some new formulae for both position and velocity updating, the introduction of an age variable, and the devise of an intensification searches using the cross entropy method, are proposed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 March 2020

Jinshun Yan

To obtain a high-quality finished product model, three-dimensional (3D) printing needs to be optimized.

Abstract

Purpose

To obtain a high-quality finished product model, three-dimensional (3D) printing needs to be optimized.

Design/methodology/approach

Based on back-propagation neural network (BPNN), the particle swarm optimization (PSO) algorithm was improved for optimizing the parameters of BPNN, and then the model precision was predicted with the improved PSO-BPNN (IPSO-BPNN) taking nozzle temperature, etc. as the influencing factors.

Findings

It was found from the experimental results that the prediction results of IPSO-BPNN were closer to the actual values than BPNN and PSO-BPNN, and the prediction error was smaller; the average error of dimensional precision and surface precision was 6.03% and 6.54%, respectively, which suggested that it could provide a reliable guidance for 3D printing optimization.

Originality/value

The experimental results verify the validity of IPSO-BPNN in 3D printing precision prediction and make some contributions to the improvement of the precision of finished products and the realization of 3D printing optimization.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 October 2019

Zuoming Liu and Vaidyanathan Jayaraman

This paper aims to investigate how the professional service outsourcing (PSO) firm’s external knowledge integration with global clients, internal integration across various…

Abstract

Purpose

This paper aims to investigate how the professional service outsourcing (PSO) firm’s external knowledge integration with global clients, internal integration across various functional units and the synergistic effects between them in improving PSO performance.

Design/methodology/approach

Drawing on the theory of organizational learning, a conceptual framework is proposed with hypothesized relationships. The relationships in this conceptual model were tested using a structural equation model (SEM) to analyze a survey dataset including 192 Indian-based professional service providers.

Findings

A service provider’s performance is positively associated with its external integration with global clients and internal integration across various functional units. Synergistic effect is generated from balanced high-level external and internal integration in improving PSO performance.

Research limitations/implications

This study contributes to the much-needed efforts in studying PSO, a new and fast-growing cross-border professional service activity, and provides helpful managerial implications to practicing global clients and offshore PSO service providers on how to successfully manage and govern the outsourcing process to achieve expected benefits.

Originality/value

This study focuses on offshore service provider’s viewpoint to extend traditional supply-chain integration regarding cooperative and mutually beneficial mechanisms to the context of PSO.

Details

Journal of Global Operations and Strategic Sourcing, vol. 12 no. 3
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 3 January 2023

Hicham Barrar and Rocio Ruiz-Benitez

Manufacturing firms (MFs) nowadays are struggling to design and maintain an integrated product-service offer. This paper aims to explore the role of the supply chain (SC) in the…

Abstract

Purpose

Manufacturing firms (MFs) nowadays are struggling to design and maintain an integrated product-service offer. This paper aims to explore the role of the supply chain (SC) in the design of the Product-Service System (PSS). In particular, the study focuses on the Design for Supply Chain (DfSC) approach in order to understand its role and contribution to the Design for Product Service Supportability (DfPSSu) approach in supporting PSS design.

Design/methodology/approach

Based on the multiple-case study approach, this paper used in-depth-interviews method to collect primary data from four multinational car manufacturers and two academic researchers.

Findings

The study reveals how a better design of the SC is required for the development of a service supportability approach that, in turn, facilitates the design of the PSS. Additionally, Internet of Things (IoT) technologies support MFs to analyse the ongoing development of the PSS business model. Finally, a better design of PSS is essential for strengthening the integration of Product and Service Offerings.

Practical implications

This study suggests that MFs can build dynamic SC capabilities to deal with fundamental changes that occurred when adopting servitization.

Originality/value

This paper is among the first attempts to study the design process of the PSS business model in a real business context taking into account different design strategies.

Article
Publication date: 6 February 2017

Biwei Tang, Zhu Zhanxia and Jianjun Luo

Aiming at obtaining a high-quality global path for a mobile robot which works in complex environments, a modified particle swarm optimization (PSO) algorithm, named…

Abstract

Purpose

Aiming at obtaining a high-quality global path for a mobile robot which works in complex environments, a modified particle swarm optimization (PSO) algorithm, named random-disturbance self-adaptive particle swarm optimization (RDSAPSO), is proposed in this paper.

Design/methodology/approach

A perturbed global updating mechanism is introduced to the global best position to avoid stagnation in RDSAPSO. Moreover, a new self-adaptive strategy is proposed to fine-tune the three control parameters in RDSAPSO to dynamically adjust the exploration and exploitation capabilities of RDSAPSO. Because the convergence of PSO is paramount and influences the quality of the generated path, this paper also analytically investigates the convergence of RDSAPSO and provides a convergence-guaranteed parameter selection principle for RDSAPSO. Finally, a RDSAPSO-based global path planning (GPP) method is developed, in which the feasibility-based rule is applied to handle the constraint of the problem.

Findings

In an attempt to validate the proposed method, it is compared against six state-of-the-art evolutionary methods under three different numerical simulations. The simulation results confirm that the proposed method is highly competitive in terms of the path optimality. Moreover, the computation time of the proposed method is comparable with those of the other compared methods.

Originality/value

Therefore, the proposed method can be considered as a vital alternative in the field of GPP.

Article
Publication date: 3 July 2020

Ambaji S. Jadhav, Pushpa B. Patil and Sunil Biradar

Diabetic retinopathy (DR) is a central root of blindness all over the world. Though DR is tough to diagnose in starting stages, and the detection procedure might be time-consuming…

Abstract

Purpose

Diabetic retinopathy (DR) is a central root of blindness all over the world. Though DR is tough to diagnose in starting stages, and the detection procedure might be time-consuming even for qualified experts. Nowadays, intelligent disease detection techniques are extremely acceptable for progress analysis and recognition of various diseases. Therefore, a computer-aided diagnosis scheme based on intelligent learning approaches is intended to propose for diagnosing DR effectively using a benchmark dataset.

Design/methodology/approach

The proposed DR diagnostic procedure involves four main steps: (1) image pre-processing, (2) blood vessel segmentation, (3) feature extraction, and (4) classification. Initially, the retinal fundus image is taken for pre-processing with the help of Contrast Limited Adaptive Histogram Equalization (CLAHE) and average filter. In the next step, the blood vessel segmentation is carried out using a segmentation process with optimized gray-level thresholding. Once the blood vessels are extracted, feature extraction is done, using Local Binary Pattern (LBP), Texture Energy Measurement (TEM based on Laws of Texture Energy), and two entropy computations – Shanon's entropy, and Kapur's entropy. These collected features are subjected to a classifier called Neural Network (NN) with an optimized training algorithm. Both the gray-level thresholding and NN is enhanced by the Modified Levy Updated-Dragonfly Algorithm (MLU-DA), which operates to maximize the segmentation accuracy and to reduce the error difference between the predicted and actual outcomes of the NN. Finally, this classification error can correctly prove the efficiency of the proposed DR detection model.

Findings

The overall accuracy of the proposed MLU-DA was 16.6% superior to conventional classifiers, and the precision of the developed MLU-DA was 22% better than LM-NN, 16.6% better than PSO-NN, GWO-NN, and DA-NN. Finally, it is concluded that the implemented MLU-DA outperformed state-of-the-art algorithms in detecting DR.

Originality/value

This paper adopts the latest optimization algorithm called MLU-DA-Neural Network with optimal gray-level thresholding for detecting diabetic retinopathy disease. This is the first work utilizes MLU-DA-based Neural Network for computer-aided Diabetic Retinopathy diagnosis.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of over 1000