Search results

1 – 10 of 965
Article
Publication date: 1 June 1993

C.P.T. GROTH and J.J. GOTTLIEB

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finitedifference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium…

83

Abstract

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finitedifference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium vibrationally relaxing and chemically reacting flows of thermally‐perfect gaseous mixtures are presented. In these methods, a novel partially‐decoupled flux‐difference splitting approach is adopted. The fluid conservation laws and species concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. The resulting partially‐decoupled gas‐dynamic and thermodynamic subsystems are then solved alternately in a lagged manner within a time marching procedure, thereby providing explicit coupling between the two equation sets. Both time‐split semi‐implicit and factored implicit flux‐limited TVD upwind schemes are described. The semi‐implicit formulation is more appropriate for unsteady applications whereas the factored implicit form is useful for obtaining steady‐state solutions. Extensions of Roe's approximate Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate the numerical flux functions. Additional modifications to the Riemann solutions are also described which ensure that the approximate solutions are not aphysical. The proposed partially‐decoupled methods are shown to have several computational advantages over chemistry‐split and fully coupled techniques. Furthermore, numerical results for single, complex, and double Mach reflection flows, as well as corner‐expansion and blunt‐body flows, using a five‐species four‐temperature model for air demonstrate the capabilities of the methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1995

D.W. Jung, D.J. Yoo and D.Y. Yang

In the present work a rigid‐plastic finite elementformulation using a dynamic explicit time integration scheme isproposed for numerical analysis of sheet metal formingprocesses…

Abstract

In the present work a rigid‐plastic finite element formulation using a dynamic explicit time integration scheme is proposed for numerical analysis of sheet metal forming processes. The rigid‐plastic finite element method, based on membrane elements, has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. The explicit scheme, in general, is based on the elastic‐plastic modelling of material requiring large computation time. The resort to rigid‐plastic modelling would improve the computational efficiency, but this involves new points of consideration such as zero energy mode instability. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM (abbreviated from Bending Energy Augmented Membrane) elements, are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and a direct trial‐and‐error method. Computations are carried out for analysis of complicated sheet metal forming processes such as forming of an oilpan and a front fender. The numerical results of explicit analysis are compared with the implicit results, with good agreement, and it is shown that the explicit scheme requires much shorter computational times, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid‐plastic finite element enables an effective computation for complicated sheet metal processes.

Details

Engineering Computations, vol. 12 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2016

Rhodri LT Bevan, Etienne Boileau, Raoul van Loon, R.W. Lewis and P Nithiarasu

The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not…

Abstract

Purpose

The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared.

Design/methodology/approach

This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split.

Findings

In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations.

Originality/value

A comprehensive comparison between three versions of the CBS method is provided for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 July 2010

C.‐B. Liu, P. Nithiarasu and P.G. Tucker

The purpose of this paper is to numerically solve Eikonal and Hamilton‐Jacobi equations using the finite element method; to use both explicit Taylor Galerkin (TG) and implicit

Abstract

Purpose

The purpose of this paper is to numerically solve Eikonal and Hamilton‐Jacobi equations using the finite element method; to use both explicit Taylor Galerkin (TG) and implicit methods to obtain shortest wall distances; to demonstrate the implemented methods on some realistic problems; and to use iterative generalized minimal residual method (GMRES) method in the solution of the equations.

Design/methodology/approach

The finite element method along with both the explicit and implicit time discretisations is employed. Two different forms of governing equations are also employed in the solution. The Eikonal equation in its original form is used in the explicit Taylor Galerkin discretisation to save computational time. For implicit method, however, the convection‐diffusion form in its conservation form is used to maintain spatial stability.

Findings

The finite element solution obtained is both accurate and smooth. As expected the implicit method is much faster than the explicit method. Though the proposed finite element solution procedures in serial is slower than the standard search procedure, they are suitable to be used in a parallel environment.

Originality/value

The finite element procedure for Eikonal and Hamilton‐Jacobi equations are attempted for the first time. Though the finite volume and finite difference‐based computational fluid dynamics (CFD) solvers have started employing differential equations for wall distance calculations, it is not common for finite element solvers to use such wall distance calculations. The results presented here clearly show that the proposed methods are suitable for unstructured meshes and finite element solvers.

Details

Engineering Computations, vol. 27 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 January 2022

Hafiz Faiz Rasool, Muhammad Ali Qureshi, Abdul Aziz, Zain Ul Abiden Akhtar and Usman Ali Khan

The purpose of this paper is to provide a brief introduction of the finite difference based parabolic equation (PE) modeling to the advanced engineering students and academic…

Abstract

Purpose

The purpose of this paper is to provide a brief introduction of the finite difference based parabolic equation (PE) modeling to the advanced engineering students and academic researchers.

Design/methodology/approach

A three-dimensional parabolic equation (3DPE) model is developed from the ground up for modeling wave propagation in the tunnel via a rectangular waveguide structure. A discussion of vector wave equations from Maxwell’s equations followed by the paraxial approximations and finite difference implementation is presented for the beginners. The obtained simulation results are compared with the analytical solution.

Findings

It is shown that the alternating direction implicit finite difference method (FDM) is more efficient in terms of accuracy, computational time and memory than the explicit FDM. The reader interested in maximum details of individual contributions such as the latest achievements in PE modeling until 2021, basic PE derivation, PE formulation’s approximations, finite difference discretization and implementation of 3DPE, can learn from this paper.

Research limitations/implications

For the purpose of this paper, a simple 3DPE formulation is presented. For simplicity, a rectangular waveguide structure is discretized with the finite difference approach as a design problem. Future work could use the PE based FDM to study the possibility of utilization of meteorological techniques, including the effects of backward traveling waves as well as making comparisons with the experimental data.

Originality/value

The proposed work is directly applicable to typical problems in the field of tunnel propagation modeling for both national commercial and military applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 January 2023

Roshith Mittakolu, Sarma L. Rani and Dilip Srinivas Sundaram

A higher-order implicit shock-capturing scheme is presented for the Euler equations based on time linearization of the implicit flux vector rather than the residual vector.

Abstract

Purpose

A higher-order implicit shock-capturing scheme is presented for the Euler equations based on time linearization of the implicit flux vector rather than the residual vector.

Design/methodology/approach

The flux vector is linearized through a truncated Taylor-series expansion whose leading-order implicit term is an inner product of the flux Jacobian and the vector of differences between the current and previous time step values of conserved variables. The implicit conserved-variable difference vector is evaluated at cell faces by using the reconstructed states at the left and right sides of a cell face and projecting the difference between the left and right states onto the right eigenvectors. Flux linearization also facilitates the construction of implicit schemes with higher-order spatial accuracy (up to third order in the present study). To enhance the diagonal dominance of the coefficient matrix and thereby increase the implicitness of the scheme, wave strengths at cell faces are expressed as the inner product of the inverse of the right eigenvector matrix and the difference in the right and left reconstructed states at a cell face.

Findings

The accuracy of the implicit algorithm at Courant–Friedrichs–Lewy (CFL) numbers greater than unity is demonstrated for a number of test cases comprising one-dimensional (1-D) Sod’s shock tube, quasi 1-D steady flow through a converging-diverging nozzle, and two-dimensional (2-D) supersonic flow over a compression corner and an expansion corner.

Practical implications

The algorithm has the advantage that it does not entail spatial derivatives of flux Jacobian so that the implicit flux can be readily evaluated using Roe’s approximate Jacobian. As a result, this approach readily facilitates the construction of implicit schemes with high-order spatial accuracy such as Roe-MUSCL.

Originality/value

A novel finite-volume-based higher-order implicit shock-capturing scheme was developed that uses time linearization of fluxes at cell interfaces.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1146

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 June 2007

Mehdi Dehghan

The diffusion‐advection phenomena occur in many physical situations such as, the transport of heat in fluids, flow through porous media, the spread of contaminants in fluids and

Abstract

Purpose

The diffusion‐advection phenomena occur in many physical situations such as, the transport of heat in fluids, flow through porous media, the spread of contaminants in fluids and as well as in many other branches of science and engineering. So it is essential to approximate the solution of these kinds of partial differential equations numerically in order to investigate the prediction of the mathematical models, as the exact solutions are usually unavailable.

Design/methodology/approach

The difficulties arising in numerical solutions of the transport equation are well known. Hence, the study of transport equation continues to be an active field of research. A number of mathematicians have developed the method of time‐splitting to divide complicated time‐dependent partial differential equations into sets of simpler equations which could then be solved separately by numerical means over fractions of a time‐step. For example, they split large multi‐dimensional equations into a number of simpler one‐dimensional equations each solved separately over a fraction of the time‐step in the so‐called locally one‐dimensional (LOD) method. In the same way, the time‐splitting process can be used to subdivide an equation incorporating several physical processes into a number of simpler equations involving individual physical processes. Thus, instead of applying the one‐dimensional advection‐diffusion equation over one time‐step, it may be split into the pure advection equation and the pure diffusion equation each to be applied over half a time‐step. Known accurate computational procedures of solving the simpler diffusion and advection equations may then be used to solve the advection‐diffusion problem.

Findings

In this paper, several different computational LOD procedures were developed and discussed for solving the two‐dimensional transport equation. These schemes are based on the time‐splitting finite difference approximations.

Practical implications

The new approach is simple and effective. The results of a numerical experiment are given, and the accuracy are discussed and compared.

Originality/value

A comparison of calculations with the results of the conventional finite difference techniques demonstrates the good accuracy of the proposed approach.

Details

Kybernetes, vol. 36 no. 5/6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 22 August 2008

M. Rezaiee‐Pajand and J. Alamatian

This paper aims to provide a simple and accurate higher order predictor‐corrector integration which can be used in dynamic analysis and to compare it with the previous works.

Abstract

Purpose

This paper aims to provide a simple and accurate higher order predictor‐corrector integration which can be used in dynamic analysis and to compare it with the previous works.

Design/methodology/approach

The predictor‐corrector integration is defined by combining the higher order explicit and implicit integrations in which displacement and velocity are assumed to be functions of accelerations of several previous time steps. By studying the accuracy and stability conditions, the weighted factors and acceptable time step are determined.

Findings

Simplicity and vector operations plus accuracy and stability are the main specifications of the new predictor‐corrector method. This procedure can be used in linear and nonlinear dynamic analysis.

Research limitations/implications

In the proposed integration, time step is assumed to be constant.

Practical implications

The numerical integration is the heart of a dynamic analysis. The result's accuracy is strongly influenced by the accuracy and stability of the numerical integration.

Originality/value

This paper presents simple and accurate predictor‐corrector integration based on accelerations of several previous time steps. This may be used as a routine in any dynamic analysis software to enhance accuracy and reduce computational time.

Details

Engineering Computations, vol. 25 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

José I.V. Sena, Cedric Lequesne, L Duchene, Anne-Marie Habraken, Robertt A.F. Valente and Ricardo J Alves de Sousa

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between…

Abstract

Purpose

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between the tool and the sheet surface, as well as the nonlinear material behaviour combined with non-monotonic strain paths. The purpose of this paper is to propose an adaptive remeshing technique implemented in the in-house implicit finite element code LAGAMINE, to reduce the simulation time. This remeshing technique automatically refines only a portion of the sheet mesh in vicinity of the tool, therefore following the tool motion. As a result, refined meshes are avoided and consequently the total CPU time can be drastically reduced.

Design/methodology/approach

SPIF is a dieless manufacturing process in which a sheet is deformed by using a tool with a spherical tip. This dieless feature makes the process appropriate for rapid-prototyping and allows for an innovative possibility to reduce overall costs for small batches, since the process can be performed in a rapid and economic way without expensive tooling. As a consequence, research interest related to SPIF process has been growing over the last years.

Findings

In this work, the proposed automatic refinement technique is applied within a reduced enhanced solid-shell framework to further improve numerical efficiency. In this sense, the use of a hexahedral finite element allows the possibility to use general 3D constitutive laws. Additionally, a direct consideration of thickness variations, double-sided contact conditions and evaluation of all components of the stress field are available with solid-shell and not with shell elements. Additionally, validations by means of benchmarks are carried out, with comparisons against experimental results.

Originality/value

It is worth noting that no previous work has been carried out using remeshing strategies combined with hexahedral elements in order to improve the computational efficiency resorting to an implicit scheme, which makes this work innovative. Finally, it has been shown that it is possible to perform accurate and efficient finite element simulations of SPIF process, resorting to implicit analysis and continuum elements. This is definitively a step-forward on the state-of-art in this field.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 965