Search results

1 – 3 of 3
Article
Publication date: 26 October 2018

Tugrul Oktay, Harun Celik and Ilke Turkmen

The purpose of this paper is to examine the success of constrained control on reducing motion blur which occurs as a result of helicopter vibration.

Abstract

Purpose

The purpose of this paper is to examine the success of constrained control on reducing motion blur which occurs as a result of helicopter vibration.

Design/methodology/approach

Constrained controllers are designed to reduce the motion blur on images taken by helicopter. Helicopter vibrations under tight and soft constrained controllers are modeled and added to images to show the performance of controllers on reducing blur.

Findings

The blur caused by vibration can be reduced via constrained control of helicopter.

Research limitations/implications

The motion of camera is modeled and assumed same as the motion of helicopter. In model of exposing image, image noise is neglected, and blur is considered as the only distorting effect on image.

Practical implications

Tighter constrained controllers can be implemented to take higher quality images by helicopters.

Social implications

Recently, aerial vehicles are widely used for aerial photography. Images taken by helicopters mostly suffer from motion blur. Reducing motion blur can provide users to take higher quality images by helicopters.

Originality/value

Helicopter control is performed to reduce motion blur on image for the first time. A control-oriented and physic-based model of helicopter is benefited. Helicopter vibration which causes motion blur is modeled as blur kernel to see the effect of helicopter vibration on taken images. Tight and soft constrained controllers are designed and compared to denote their performance in reducing motion blur. It is proved that images taken by helicopter can be prevented from motion blur by controlling helicopter tightly.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2018

Tugrul Oktay, Seda Arik, Ilke Turkmen, Metin Uzun and Harun Celik

The aim of this paper is to redesign of morphing unmanned aerial vehicle (UAV) using neural network for simultaneous improvement of roll stability coefficient and maximum…

Abstract

Purpose

The aim of this paper is to redesign of morphing unmanned aerial vehicle (UAV) using neural network for simultaneous improvement of roll stability coefficient and maximum lift/drag ratio.

Design/methodology/approach

Redesign of a morphing our UAV manufactured in Faculty of Aeronautics and Astronautics, Erciyes University is performed with using artificial intelligence techniques. For this purpose, an objective function based on artificial neural network (ANN) is obtained to get optimum values of roll stability coefficient (Clβ) and maximum lift/drag ratio (Emax). The aim here is to save time and obtain satisfactory errors in the optimization process in which the ANN trained with the selected data is used as the objective function. First, dihedral angle (φ) and taper ratio (λ) are selected as input parameters, C*lβ and Emax are selected as output parameters for ANN. Then, ANN is trained with selected input and output data sets. Training of the ANN is possible by adjusting ANN weights. Here, ANN weights are adjusted with artificial bee colony (ABC) algorithm. After adjusting process, the objective function based on ANN is optimized with ABC algorithm to get better Clβ and Emax, i.e. the ABC algorithm is used for two different purposes.

Findings

By using artificial intelligence methods for redesigning of morphing UAV, the objective function consisting of C*lβ and Emax is maximized.

Research limitations/implications

It takes quite a long time for Emax data to be obtained realistically by using the computational fluid dynamics approach.

Practical implications

Neural network incorporation with the optimization method idea is beneficial for improving Clβ and Emax. By using this approach, low cost, time saving and practicality in applications are achieved.

Social implications

This method based on artificial intelligence methods can be useful for better aircraft design and production.

Originality/value

It is creating a novel method in order to redesign of morphing UAV and improving UAV performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 March 2018

Ilke Turkmen

This paper aims to present an alternative airspeed computation method based on artificial neural networks (ANN) without requiring pitot-static system measurements.

Abstract

Purpose

This paper aims to present an alternative airspeed computation method based on artificial neural networks (ANN) without requiring pitot-static system measurements.

Design/methodology/approach

The data set used to train proposed neural model is obtained from the Digital Flight Data Acquisition Unit records of a Boeing 737 type commercial aircraft for real flight routes. The proposed method uses the flight parameters as inputs of the ANN. The Levenberg–Marquardt training algorithm was used to train the neural model.

Findings

The predicted airspeed values obtained with ANN are in good agreement with the measured airspeed values. The proposed neural model can be used as an alternative airspeed computation method.

Practical implications

The proposed alternative airspeed computation method can be used when the air data computer or pitot-static system has failed.

Originality/value

The proposed method uses flight parameters as inputs for the ANN. As such, airspeed is calculated using flight parameters instead of the pitot-static system measurements.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 3 of 3