Search results

1 – 4 of 4
Article
Publication date: 22 January 2024

Shirin Hassanizadeh, Zahra Darabi, Maryam Khosravi, Masoud Mirzaei and Mahdieh Hosseinzadeh

The COVID-19 pandemic has caused significant mortality and morbidity worldwide. However, the role of dietary patterns as a potential risk factor for COVID-19 has not been well…

Abstract

Purpose

The COVID-19 pandemic has caused significant mortality and morbidity worldwide. However, the role of dietary patterns as a potential risk factor for COVID-19 has not been well established, especially in studies with large samples. Therefore, this study aims to identify and evaluate the association between major dietary patterns and COVID-19 among adults from Iran.

Design/methodology/approach

In this cross-sectional study, the authors included 9,189 participants aged 20–70 who participated in the Yazd Health Study (YaHS) and Taghzieh Mardom-e-Yazd study (TAMIZ). They used factor analysis to extract dietary patterns based on a food frequency questionnaire (FFQ). Then, they assessed the relationship between these dietary patterns and the odds of COVID-19.

Findings

This study identified two major dietary patterns: “high protein and high fiber” and “transitional”. Participants in the highest tertile of the “high protein and high fiber” dietary pattern, which included vegetables, fruits, dairy and various kinds of meats such as red meat, fish and poultry, had a lower odds of COVID-19 compared with those in the lowest tertile. However, the “transitional” dietary pattern did not affect the risk of COVID-19.

Originality/value

In conclusion, a “high protein, high fiber” diet may lower the odds of COVID-19. This study suggests that dietary patterns may influence the severity and spread of future similar pandemics.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 15 September 2023

Xiaohan Xu, Xudong Huang, Ke Zhang and Ming Zhou

In general, the existing compressor design methods require abundant knowledge and inspiration. The purpose of this study is to identify an intellectual design optimization method…

Abstract

Purpose

In general, the existing compressor design methods require abundant knowledge and inspiration. The purpose of this study is to identify an intellectual design optimization method that enables a machine to learn how to design it.

Design/methodology/approach

The airfoil design process was solved using the reinforcement learning (RL) method. An intellectual method based on a modified deep deterministic policy gradient (DDPG) algorithm was implemented. The new method was applied to agents to learn the design policy under dynamic constraints. The agents explored the design space with the help of a surrogate model and airfoil parameterization.

Findings

The agents successfully learned to design the airfoils. The loss coefficients of a controlled diffusion airfoil improved by 1.25% and 3.23% in the two- and four-dimensional design spaces, respectively. The agents successfully learned to design under various constraints. Additionally, the modified DDPG method was compared with a genetic algorithm optimizer, verifying that the former was one to two orders of magnitude faster in policy searching. The NACA65 airfoil was redesigned to verify the generalization.

Originality/value

It is feasible to consider the compressor design as an RL problem. Trained agents can determine and record the design policy and adapt it to different initiations and dynamic constraints. More intelligence is demonstrated than when traditional optimization methods are used. This methodology represents a new, small step toward the intelligent design of compressors.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 October 2022

Vladimiro Verre, Darío Milesi and Natalia Petelski

Joint research is pointed out by the literature as a potentially virtuous cooperation scheme to generate learning in the public sphere and beneficial effects in society. The…

Abstract

Purpose

Joint research is pointed out by the literature as a potentially virtuous cooperation scheme to generate learning in the public sphere and beneficial effects in society. The purpose of this study, based on the Argentine experience in the COVID-19 pandemic, is to analyze the network of capacities, relationships and effects generated, over time, by a series of projects financed by the State in 2010, to clarify the link between learning effects and social effects.

Design/methodology/approach

A qualitative methodology focused on the multiple case study method was used. Each case covers joint R&D projects financed 10 years ago by the state that subsequently led to different solutions for COVID-19.

Findings

The work identifies a public learning process that integrates both industry’s contributions and the intellectual dimension of economic benefits and their translation into specific capabilities; conceptualizes the capacities accumulation process as a multiplier of social effects (direct and indirect) that emerge as knowledge is reused; identifies the articulation between different schemes as a condition for learning effects and social effects to manifest over time.

Originality/value

An aspect not studied in the literature is addressed, the relationship between the learning process induced by joint research, in terms of capabilities, and the social effects specifically generated over time. This is taking place in a context, such as the COVID-19 pandemic, where calls from the scientific and academic community to promote science–industry cooperation are multiplying.

Details

Journal of Science and Technology Policy Management, vol. 15 no. 2
Type: Research Article
ISSN: 2053-4620

Keywords

1 – 4 of 4