Search results

1 – 2 of 2
Article
Publication date: 4 June 2021

Luis Lisandro Lopez Taborda, Heriberto Maury and Jovanny Pacheco

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to…

1200

Abstract

Purpose

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to corroborate and deepen other researchers’ findings, dissipate divergences and provide directing to future work on the subject from a methodological and convergent perspective.

Design/methodology/approach

This study analyzes the previous reviews (about 15 reviews) and based on the consensus and the classifications provided by these authors, a significant sample of research is analyzed in the design for additive manufacturing (DFAM) theme (approximately 80 articles until June of 2017 and approximately 280–300 articles until February of 2019) through descriptive statistics, to corroborate and deepen the findings of other researchers.

Findings

Throughout this work, this paper found statistics indicating that the main areas studied are: multiple objective optimizations, execution of the design, general DFAM and DFAM for functional performance. Among the main conclusions: there is a lack of innovation in the products developed with the methodologies, there is a lack of exhaustivity in the methodologies, there are few efforts to include environmental aspects in the methodologies, many of the methods include economic and cost evaluation, but are not very explicit and broad (sustainability evaluation), it is necessary to consider a greater variety of functions, among other conclusions

Originality/value

The novelty in this study is the methodology. It is very objective, comprehensive and quantitative. The starting point is not the case studies nor the qualitative criteria, but the figures and quantities of methodologies. The main contribution of this review article is to guide future work on the subject from a methodological and convergent perspective and this article provides a broad database with articles containing information on many issues to make decisions: design methodology; optimization; processes, selection of parts and materials; cost and product management; mechanical, electrical and thermal properties; health and environmental impact, etc.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 February 2021

Luis Lisandro López Taborda, Eduar Pérez, Daniel Quintero, José Fernando Noguera Polania, Habib Zambrano Rodriguez, Heriberto Maury and Ivan E. Esparragoza

This study aims to evaluate the impact breaking energy of the parts manufactured by the fused filament fabrication (FFF) method. The evaluation considers the use of the epoxy…

Abstract

Purpose

This study aims to evaluate the impact breaking energy of the parts manufactured by the fused filament fabrication (FFF) method. The evaluation considers the use of the epoxy resin coating, different materials and different printing orientations.

Design/methodology/approach

The authors developed an experimental statistical design using 54 experimental trials. The experiments’ output variable is the impact break energy of the parts manufactured by the FFF method. The input variables for the experiments consist of an epoxy resin coating (XTC-3D®, generic resin and without resin coating), different filament materials (nylon + carbon fiber, polyethylene terephthalate and polycarbonate) and different printing orientations (flat, edge and vertical) used. The authors carried out the tests following the EN ISO 179-1.

Findings

The use of resin coating has a significant influence on the impact energy of parts manufactured using the FFF method. The resin coating increases the impact resistance of parts processed by FFF by almost 100% of the value as compared to the parts without a resin coating. Post-processing is useful on ductile materials and increases impact breaking energy at weak print orientations.

Originality/value

This research opens a new opportunity to improve the mechanical properties of parts manufactured using the FFF method. The use of a resin coating reinforces the parts in weak print orientation.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2