Search results

1 – 2 of 2
Article
Publication date: 5 April 2024

Heping Liu, Jinxin Lu, Fusheng Zhu and Ani Luo

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Abstract

Purpose

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Design/methodology/approach

The mathematical models and dynamic models of the D-bar dual cable (hereafter referred to as DD cable) unit of the tensegrity-based traction structure are established. Based on the minimum mass method, the mass of the DD cable unit in the critical state (cable member is yielding, or bar member is buckling or yielding) is analyzed. Then, the tensile strength of the DD cable unit and single cable unit under the same condition is compared using the control variate method. Finally, based on ANSYS dynamic simulation, the stability of the two structures under the same external force disturbance was tested.

Findings

Expressions for the minimum mass of the DD cable unit under different failure conditions are solved. Dynamic simulation results show that the capacity of resisting disturbance of the DD cable unit is much better than that of the single cable unit under the same wind speed. So, we find a structure more suitable for the fixed connection of an airship.

Originality/value

This study helps to provide theoretical reference and thinking for the practical application of the traction structure with a D-bar dual cable unit.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 November 2023

Heping Liu, Sanaullah, Angelo Vumiliya and Ani Luo

The aim of this article is to obtain a stable tensegrity structure by using the minimum knowledge of the structure.

Abstract

Purpose

The aim of this article is to obtain a stable tensegrity structure by using the minimum knowledge of the structure.

Design/methodology/approach

Three methods have been formulated based on the eigen value decomposition (EVD) and singular value decomposition theorems. These two theorems are being implemented on the matrices, which are computed from the minimal data of the structure. The required minimum data for the structure is the dimension of the structure, the connectivity matrix of the structure and the initial force density matrix computed from the type of elements. The stability of the structure is analyzed based on the rank deficiency of the force density matrix and equilibrium matrix.

Findings

The main purpose of this article is to use the defined methods to find (1) the nodal coordinates of the structure, (2) the final force density values of the structure, (3) single self-stress from multiple self-stresses and (4) the stable structure.

Originality/value

By using the defined approaches, one can understand the difference of each method, which includes, (1) the selection of eigenvalues, (2) the selection of nodal coordinates from the first decomposition theorem, (3) the selection of mechanism mode and force density values further and (4) the solution of single feasible self-stress from multiple self-stresses.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Year

Last 6 months (2)

Content type

1 – 2 of 2