Search results

1 – 2 of 2
Article
Publication date: 29 April 2014

Debasis Das Adhikary, Goutam Kumar Bose, Dipankar Bose and Souren Mitra

The purpose of this paper is to present a multi criterion failure mode effect and criticality analysis for coal-fired thermal power plants using uncertain data as well as…

Abstract

Purpose

The purpose of this paper is to present a multi criterion failure mode effect and criticality analysis for coal-fired thermal power plants using uncertain data as well as substituting the traditional risk priority number estimation method.

Design/methodology/approach

Grey-complex proportional assessment (COPRAS-G) method, a multi criteria decision making tool is applied to evaluate the criticalities of the failure modes (alternatives). In this model the criteria (criticality factor) against each alternative are expressed in grey number instead of crisp values.

Findings

Rupture failure of the straight tube of economizer (ECO) due to erosion is the highest critical failure mode whereas rupture failure of the stub of ECO due to welding defect is the lowest critical failure mode.

Originality/value

This paper incorporates human and environmental factors as additional factors which also influence the failure modes significantly. The COPRAS-G method is modified according this problem. Uncertainty in the scoring of criticality factors against each failure mode by various maintenance personnel is expressed in grey numbers.

Details

International Journal of Quality & Reliability Management, vol. 31 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 15 September 2021

Srinivas Rao Sriram, Saidireddy Parne, Venkata Satya Chidambara Swamy Vaddadi, Damodar Edla, Nagaraju P., Raji Reddy Avala, Vijayakumar Yelsani and Uday Bhasker Sontu

This paper aims to focus on the basic principle of WO3 gas sensors to achieve high gas-sensing performance with good stability and repeatability. Metal oxide-based gas sensors are…

Abstract

Purpose

This paper aims to focus on the basic principle of WO3 gas sensors to achieve high gas-sensing performance with good stability and repeatability. Metal oxide-based gas sensors are widely used for monitoring toxic gas leakages in the environment, industries and households. For better livelihood and a healthy environment, it is extremely helpful to have sensors with higher accuracy and improved sensing features.

Design/methodology/approach

In the present review, the authors focus on recent synthesis methods of WO3-based gas sensors to enhance sensing features towards toxic gases.

Findings

This work has proved that the synthesis method led to provide different morphologies of nanostructured WO3-based material in turn to improve gas sensing performance along with its sensing mechanism.

Originality/value

In this work, the authors reviewed challenges and possibilities associated with the nanostructured WO3-based gas sensors to trace toxic gases such as ammonia, H2S and NO2 for future research.

Details

Sensor Review, vol. 41 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 2 of 2