Search results

1 – 1 of 1
Article
Publication date: 21 November 2023

Peyman Aghdasi, Shayesteh Yousefi and Reza Ansari

In this paper, based on the density functional theory (DFT) and finite element method (FEM), the elastic, buckling and vibrational behaviors of the monolayer bismuthene are…

66

Abstract

Purpose

In this paper, based on the density functional theory (DFT) and finite element method (FEM), the elastic, buckling and vibrational behaviors of the monolayer bismuthene are studied.

Design/methodology/approach

The computed elastic properties based on DFT are used to develop a finite element (FE) model for the monolayer bismuthene in which the Bi-Bi bonds are simulated by beam elements. Furthermore, mass elements are used to model the Bi atoms. The developed FE model is used to compute Young's modulus of monolayer bismuthene. The model is then used to evaluate the buckling force and fundamental natural frequency of the monolayer bismuthene with different geometrical parameters.

Findings

Comparing the results of the FEM and DFT, it is shown that the proposed model can predict Young's modulus of the monolayer bismuthene with an acceptable accuracy. It is also shown that the influence of the vertical side length on the fundamental natural frequency of the monolayer bismuthene is not significant. However, vibrational characteristics of the bismuthene are significantly affected by the horizontal side length.

Originality/value

DFT and FEM are used to study the elastic, vibrational and buckling properties of the monolayer bismuthene. The developed model can be used to predict Young's modulus of the monolayer bismuthene accurately. Effect of the vertical side length on the fundamental natural frequency is negligible. However, vibrational characteristics are significantly affected by the horizontal side length.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Year

Last 3 months (1)

Content type

1 – 1 of 1